Source code for airflow.example_dags.example_datasets

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example DAG for demonstrating behavior of Datasets feature.

Notes on usage:

Turn on all the dags.

DAG dataset_produces_1 should run because it's on a schedule.

After dataset_produces_1 runs, dataset_consumes_1 should be triggered immediately
because its only dataset dependency is managed by dataset_produces_1.

No other dags should be triggered.  Note that even though dataset_consumes_1_and_2 depends on
the dataset in dataset_produces_1, it will not be triggered until dataset_produces_2 runs
(and dataset_produces_2 is left with no schedule so that we can trigger it manually).

Next, trigger dataset_produces_2.  After dataset_produces_2 finishes,
dataset_consumes_1_and_2 should run.

Dags dataset_consumes_1_never_scheduled and dataset_consumes_unknown_never_scheduled should not run because
they depend on datasets that never get updated.
"""
from __future__ import annotations

import pendulum

from airflow import DAG, Dataset
from airflow.operators.bash import BashOperator

# [START dataset_def]
[docs]dag1_dataset = Dataset("s3://dag1/output_1.txt", extra={"hi": "bye"})
# [END dataset_def]
[docs]dag2_dataset = Dataset("s3://dag2/output_1.txt", extra={"hi": "bye"})
with DAG( dag_id="dataset_produces_1", catchup=False, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), schedule="@daily", tags=["produces", "dataset-scheduled"], ) as dag1: # [START task_outlet] BashOperator(outlets=[dag1_dataset], task_id="producing_task_1", bash_command="sleep 5") # [END task_outlet] with DAG( dag_id="dataset_produces_2", catchup=False, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), schedule=None, tags=["produces", "dataset-scheduled"], ) as dag2: BashOperator(outlets=[dag2_dataset], task_id="producing_task_2", bash_command="sleep 5") # [START dag_dep] with DAG( dag_id="dataset_consumes_1", catchup=False, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), schedule=[dag1_dataset], tags=["consumes", "dataset-scheduled"], ) as dag3: # [END dag_dep] BashOperator( outlets=[Dataset("s3://consuming_1_task/dataset_other.txt")], task_id="consuming_1", bash_command="sleep 5", ) with DAG( dag_id="dataset_consumes_1_and_2", catchup=False, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), schedule=[dag1_dataset, dag2_dataset], tags=["consumes", "dataset-scheduled"], ) as dag4: BashOperator( outlets=[Dataset("s3://consuming_2_task/dataset_other_unknown.txt")], task_id="consuming_2", bash_command="sleep 5", ) with DAG( dag_id="dataset_consumes_1_never_scheduled", catchup=False, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), schedule=[ dag1_dataset, Dataset("s3://this-dataset-doesnt-get-triggered"), ], tags=["consumes", "dataset-scheduled"], ) as dag5: BashOperator( outlets=[Dataset("s3://consuming_2_task/dataset_other_unknown.txt")], task_id="consuming_3", bash_command="sleep 5", ) with DAG( dag_id="dataset_consumes_unknown_never_scheduled", catchup=False, start_date=pendulum.datetime(2021, 1, 1, tz="UTC"), schedule=[ Dataset("s3://unrelated/dataset3.txt"), Dataset("s3://unrelated/dataset_other_unknown.txt"), ], tags=["dataset-scheduled"], ) as dag6: BashOperator( task_id="unrelated_task", outlets=[Dataset("s3://unrelated_task/dataset_other_unknown.txt")], bash_command="sleep 5", )

Was this entry helpful?