Templates reference

Variables, macros and filters can be used in templates (see the Jinja Templating section)

The following come for free out of the box with Airflow. Additional custom macros can be added globally through Plugins, or at a DAG level through the DAG.user_defined_macros argument.

Variables

The Airflow engine passes a few variables by default that are accessible in all templates

Variable

Type

Description

{{ data_interval_start }}

pendulum.DateTime

Start of the data interval. Added in version 2.3.

{{ data_interval_end }}

pendulum.DateTime

End of the data interval. Added in version 2.3.

{{ ds }}

str

The DAG run’s logical date as YYYY-MM-DD.
Same as {{ dag_run.logical_date | ds }}.

{{ ds_nodash }}

str

Same as {{ dag_run.logical_date | ds_nodash }}.

{{ ts }}

str

Same as {{ dag_run.logical_date | ts }}.
Example: 2018-01-01T00:00:00+00:00.

{{ ts_nodash_with_tz }}

str

Same as {{ dag_run.logical_date | ts_nodash_with_tz }}.
Example: 20180101T000000+0000.

{{ ts_nodash }}

str

Same as {{ dag_run.logical_date | ts_nodash }}.
Example: 20180101T000000.

{{ prev_data_interval_start_success }}

pendulum.DateTime | None

Start of the data interval of the prior successful DAG run.
Added in version 2.3.

{{ prev_data_interval_end_success }}

pendulum.DateTime | None

End of the data interval of the prior successful DAG run.
Added in version 2.3.

{{ prev_start_date_success }}

pendulum.DateTime | None

Start date from prior successful dag run (if available).

{{ dag }}

DAG

The currently running DAG.

{{ task }}

BaseOperator

The currently running task.

{{ macros }}

A reference to the macros package. See Macros below.

{{ task_instance }}

TaskInstance

The currently running task instance.

{{ ti }}

TaskInstance

Same as {{ task_instance }}.

{{ params }}

dict[str, Any]

The user-defined params. This can be overridden by the mapping
passed to trigger_dag -c if dag_run_conf_overrides_params
is enabled in airflow.cfg.

{{ var.value }}

Airflow variables. See Airflow Variables in Templates below.

{{ var.json }}

Airflow variables. See Airflow Variables in Templates below.

{{ conn }}

Airflow connections. See Airflow Connections in Templates below.

{{ task_instance_key_str }}

str

A unique, human-readable key to the task instance. The format is
{dag_id}__{task_id}__{ds_nodash}.

{{ conf }}

AirflowConfigParser

The full configuration object representing the content of your
airflow.cfg. See airflow.configuration.conf.

{{ run_id }}

str

The currently running DAG run’s run ID.

{{ dag_run }}

DagRun

The currently running DAG run.

{{ test_mode }}

bool

Whether the task instance was run by the airflow test CLI.

{{ expanded_ti_count }}

int | None

Number of task instances that a mapped task was expanded into. If
the current task is not mapped, this should be None.
Added in version 2.5.

Note

The DAG run’s logical date, and values derived from it, such as ds and ts, should not be considered unique in a DAG. Use run_id instead.

The following variables are deprecated. They are kept for backward compatibility, but you should convert existing code to use other variables instead.

Deprecated Variable

Description

{{ execution_date }}

the execution date (logical date), same as dag_run.logical_date

{{ next_execution_date }}

the logical date of the next scheduled run (if applicable); you may be able to use data_interval_end instead

{{ next_ds }}

the next execution date as YYYY-MM-DD if exists, else None

{{ next_ds_nodash }}

the next execution date as YYYYMMDD if exists, else None

{{ prev_execution_date }}

the logical date of the previous scheduled run (if applicable)

{{ prev_ds }}

the previous execution date as YYYY-MM-DD if exists, else None

{{ prev_ds_nodash }}

the previous execution date as YYYYMMDD if exists, else None

{{ yesterday_ds }}

the day before the execution date as YYYY-MM-DD

{{ yesterday_ds_nodash }}

the day before the execution date as YYYYMMDD

{{ tomorrow_ds }}

the day after the execution date as YYYY-MM-DD

{{ tomorrow_ds_nodash }}

the day after the execution date as YYYYMMDD

{{ prev_execution_date_success }}

execution date from prior successful dag run

Note that you can access the object’s attributes and methods with simple dot notation. Here are some examples of what is possible: {{ task.owner }}, {{ task.task_id }}, {{ ti.hostname }}, … Refer to the models documentation for more information on the objects’ attributes and methods.

Airflow Variables in Templates

The var template variable allows you to access Airflow Variables. You can access them as either plain-text or JSON. If you use JSON, you are also able to walk nested structures, such as dictionaries like: {{ var.json.my_dict_var.key1 }}.

It is also possible to fetch a variable by string if needed with {{ var.value.get('my.var', 'fallback') }} or {{ var.json.get('my.dict.var', {'key1': 'val1'}) }}. Defaults can be supplied in case the variable does not exist.

Airflow Connections in Templates

Similarly, Airflow Connections data can be accessed via the conn template variable. For example, you could use expressions in your templates like {{ conn.my_conn_id.login }}, {{ conn.my_conn_id.password }}, etc.

Just like with var it’s possible to fetch a connection by string (e.g. {{ conn.get('my_conn_id_'+index).host }} ) or provide defaults (e.g {{ conn.get('my_conn_id', {"host": "host1", "login": "user1"}).host }}).

Additionally, the extras field of a connection can be fetched as a Python Dictionary with the extra_dejson field, e.g. conn.my_aws_conn_id.extra_dejson.region_name would fetch region_name out of extras.

Filters

Airflow defines some Jinja filters that can be used to format values.

For example, using {{ execution_date | ds }} will output the execution_date in the YYYY-MM-DD format.

Filter

Operates on

Description

ds

datetime

Format the datetime as YYYY-MM-DD

ds_nodash

datetime

Format the datetime as YYYYMMDD

ts

datetime

Same as .isoformat(), Example: 2018-01-01T00:00:00+00:00

ts_nodash

datetime

Same as ts filter without -, : or TimeZone info. Example: 20180101T000000

ts_nodash_with_tz

datetime

As ts filter without - or :. Example 20180101T000000+0000

Macros

Macros are a way to expose objects to your templates and live under the macros namespace in your templates.

A few commonly used libraries and methods are made available.

Variable

Description

macros.datetime

The standard lib’s datetime.datetime

macros.timedelta

The standard lib’s datetime.timedelta

macros.dateutil

A reference to the dateutil package

macros.time

The standard lib’s time

macros.uuid

The standard lib’s uuid

macros.random

The standard lib’s random.random

Some airflow specific macros are also defined:

airflow.macros.datetime_diff_for_humans(dt, since=None)[source]

Return a human-readable/approximate difference between datetimes.

When only one datetime is provided, the comparison will be based on now.

Parameters
  • dt (Any) – The datetime to display the diff for

  • since (DateTime | None) – When to display the date from. If None then the diff is between dt and now.

airflow.macros.ds_add(ds, days)[source]

Add or subtract days from a YYYY-MM-DD.

Parameters
  • ds (str) – anchor date in YYYY-MM-DD format to add to

  • days (int) – number of days to add to the ds, you can use negative values

>>> ds_add('2015-01-01', 5)
'2015-01-06'
>>> ds_add('2015-01-06', -5)
'2015-01-01'
airflow.macros.ds_format(ds, input_format, output_format)[source]

Output datetime string in a given format.

Parameters
  • ds (str) – input string which contains a date

  • input_format (str) – input string format. E.g. %Y-%m-%d

  • output_format (str) – output string format E.g. %Y-%m-%d

>>> ds_format('2015-01-01', "%Y-%m-%d", "%m-%d-%y")
'01-01-15'
>>> ds_format('1/5/2015', "%m/%d/%Y",  "%Y-%m-%d")
'2015-01-05'
airflow.macros.random() x in the interval [0, 1).
airflow.macros.hive.closest_ds_partition(table, ds, before=True, schema='default', metastore_conn_id='metastore_default')[source]

This function finds the date in a list closest to the target date. An optional parameter can be given to get the closest before or after.

Parameters
  • table – A hive table name

  • ds – A datestamp %Y-%m-%d e.g. yyyy-mm-dd

  • before – closest before (True), after (False) or either side of ds

  • schema – table schema

  • metastore_conn_id – which metastore connection to use

Returns

The closest date

Return type

str | None

>>> tbl = 'airflow.static_babynames_partitioned'
>>> closest_ds_partition(tbl, '2015-01-02')
'2015-01-01'
airflow.macros.hive.max_partition(table, schema='default', field=None, filter_map=None, metastore_conn_id='metastore_default')[source]

Gets the max partition for a table.

Parameters
  • schema – The hive schema the table lives in

  • table – The hive table you are interested in, supports the dot notation as in “my_database.my_table”, if a dot is found, the schema param is disregarded

  • metastore_conn_id – The hive connection you are interested in. If your default is set you don’t need to use this parameter.

  • filter_map – partition_key:partition_value map used for partition filtering, e.g. {‘key1’: ‘value1’, ‘key2’: ‘value2’}. Only partitions matching all partition_key:partition_value pairs will be considered as candidates of max partition.

  • field – the field to get the max value from. If there’s only one partition field, this will be inferred

>>> max_partition('airflow.static_babynames_partitioned')
'2015-01-01'

Was this entry helpful?