Set up a Database Backend¶
Airflow was built to interact with its metadata using SqlAlchemy.
The document below describes the database engine configurations, the necessary changes to their configuration to be used with Airflow, as well as changes to the Airflow configurations to connect to these databases.
Choosing database backend¶
If you want to take a real test drive of Airflow, you should consider setting up a database backend to MySQL and PostgresSQL. By default, Airflow uses SQLite, which is intended for development purposes only.
Airflow supports the following database engine versions, so make sure which version you have. Old versions may not support all SQL statements.
PostgreSQL: 9.6, 10, 11, 12, 13
MySQL: 5.7, 8
SQLite: 3.15.0+
If you plan on running more than one scheduler, you have to meet additional requirements. For details, see Scheduler HA Database Requirements.
Database URI¶
Airflow uses SQLAlchemy to connect to the database, which requires you to configure the Database URL.
You can do this in option sql_alchemy_conn
in section [core]
. It is also common to configure
this option with AIRFLOW__CORE__SQL_ALCHEMY_CONN
environment variable.
Note
For more information on setting the configuration, see Setting Configuration Options.
If you want to check the current value, you can use airflow config get-value core sql_alchemy_conn
command as in
the example below.
$ airflow config get-value core sql_alchemy_conn
sqlite:////tmp/airflow/airflow.db
The exact format description is described in the SQLAlchemy documentation, see Database Urls. We will also show you some examples below.
Setting up a SQLite Database¶
SQLite database can be used to run Airflow for development purpose as it does not require any database server (the database is stored in a local file). There are a few limitations of using the SQLite database (for example it only works with Sequential Executor) and it should NEVER be used for production.
There is a minimum version of sqlite3 required to run Airflow 2.0+ - minimum version is 3.15.0. Some of the
older systems have an earlier version of sqlite installed by default and for those system you need to manually
upgrade SQLite to use version newer than 3.15.0. Note, that this is not a python library
version, it’s the
SQLite system-level application that needs to be upgraded. There are different ways how SQLIte might be
installed, you can find some information about that at the official website of SQLite and in the documentation specific to distribution of your Operating
System.
Troubleshooting
Sometimes even if you upgrade SQLite to higher version and your local python reports higher version,
the python interpreter used by Airflow might still use the older version available in the
LD_LIBRARY_PATH
set for the python interpreter that is used to start Airflow.
You can make sure which version is used by the interpreter by running this check:
root@b8a8e73caa2c:/opt/airflow# python
Python 3.6.12 (default, Nov 25 2020, 03:59:00)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import sqlite3
>>> sqlite3.sqlite_version
'3.27.2'
>>>
But be aware that setting environment variables for your Airflow deployment might change which SQLite library is found first, so you might want to make sure that the “high-enough” version of SQLite is the only version installed in your system.
An example URI for the sqlite database:
sqlite:////home/airflow/airflow.db
Upgrading SQLite on AmazonLinux AMI or Container Image
AmazonLinux SQLite can only be upgraded to v3.7 using the source repos. Airflow requires v3.15 or higher. Use the following instructions to setup the base image (or AMI) with latest SQLite3
Pre-requisite: You will need wget
, tar
, gzip
,`` gcc``, make
, and expect
to get the upgrade process working.
yum -y install wget tar gzip gcc make expect
Download source from https://sqlite.org/, make and install locally.
wget https://www.sqlite.org/src/tarball/sqlite.tar.gz
tar xzf sqlite.tar.gz
cd sqlite/
export CFLAGS="-DSQLITE_ENABLE_FTS3 \
-DSQLITE_ENABLE_FTS3_PARENTHESIS \
-DSQLITE_ENABLE_FTS4 \
-DSQLITE_ENABLE_FTS5 \
-DSQLITE_ENABLE_JSON1 \
-DSQLITE_ENABLE_LOAD_EXTENSION \
-DSQLITE_ENABLE_RTREE \
-DSQLITE_ENABLE_STAT4 \
-DSQLITE_ENABLE_UPDATE_DELETE_LIMIT \
-DSQLITE_SOUNDEX \
-DSQLITE_TEMP_STORE=3 \
-DSQLITE_USE_URI \
-O2 \
-fPIC"
export PREFIX="/usr/local"
LIBS="-lm" ./configure --disable-tcl --enable-shared --enable-tempstore=always --prefix="$PREFIX"
make
make install
Post install add /usr/local/lib
to library path
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
Setting up a MySQL Database¶
You need to create a database and a database user that Airflow will use to access this database.
In the example below, a database airflow_db
and user with username airflow_user
with password airflow_pass
will be created
CREATE DATABASE airflow_db CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
CREATE USER 'airflow_user' IDENTIFIED BY 'airflow_pass';
GRANT ALL PRIVILEGES ON airflow_db.* TO 'airflow_user';
Note
The database must use a UTF-8 character set
We rely on more strict ANSI SQL settings for MySQL in order to have sane defaults.
Make sure to have specified explicit_defaults_for_timestamp=1
option under [mysqld]
section
in your my.cnf
file. You can also activate these options with the --explicit-defaults-for-timestamp
switch passed to mysqld
executable
We recommend using the mysqlclient
driver and specifying it in your SqlAlchemy connection string.
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>
But we also support the mysql-connector-python
driver, which lets you connect through SSL
without any cert options provided.
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>
However if you want to use other drivers visit the MySQL Dialect in SQLAlchemy documentation for more information regarding download and setup of the SqlAlchemy connection.
In addition, you also should pay particular attention to MySQL’s encoding. Although the utf8mb4
character set is more and more popular for MySQL (actually, utf8mb4
becomes default character set in MySQL8.0), using the utf8mb4
encoding requires additional setting in Airflow 2+ (See more details in #7570.). If you use utf8mb4
as character set, you should also set sql_engine_collation_for_ids=utf8mb3_general_ci
.
Setting up a PostgreSQL Database¶
You need to create a database and a database user that Airflow will use to access this database.
In the example below, a database airflow_db
and user with username airflow_user
with password airflow_pass
will be created
CREATE DATABASE airflow_db;
CREATE USER airflow_user WITH PASSWORD 'airflow_pass';
GRANT ALL PRIVILEGES ON DATABASE airflow_db TO airflow_user;
Note
The database must use a UTF-8 character set
You may need to update your Postgres pg_hba.conf
to add the
airflow
user to the database access control list; and to reload
the database configuration to load your change. See
The pg_hba.conf File
in the Postgres documentation to learn more.
We recommend using the psycopg2
driver and specifying it in your SqlAlchemy connection string.
postgresql+psycopg2://<user>:<password>@<host>/<db>
Also note that since SqlAlchemy does not expose a way to target a specific schema in the database URI, you may
want to set a default schema for your role with a SQL statement similar to ALTER ROLE username SET search_path = airflow, foobar;
For more information regarding setup of the PostgresSQL connection, see PostgreSQL dialect in SQLAlchemy documentation.
Note
Airflow is known - especially in high-performance setup - to open many connections to metadata database. This might cause problems for Postgres resource usage, because in Postgres, each connection creates a new process and it makes Postgres resource-hungry when a lot of connections are opened. Therefore we recommend to use PGBouncer as database proxy for all Postgres production installations. PGBouncer can handle connection pooling from multiple components, but also in case you have remote database with potentially unstable connectivity, it will make your DB connectivity much more resilient to temporary network problems. Example implementation of PGBouncer deployment can be found in the Helm Chart for Apache Airflow where you can enable pre-configured PGBouncer instance with flipping a boolean flag. You can take a look at the approach we have taken there and use it as an inspiration, when you prepare your own Deployment, even if you do not use the Official Helm Chart.
See also Helm Chart production guide
Other configuration options¶
There are more configuration options for configuring SQLAlchemy behavior. For details, see reference documentation for sqlalchemy_*
option in [core]
section.
Initialize the database¶
After configuring the database and connecting to it in Airflow configuration, you should create the database schema.
airflow db init