Tutorial on the Taskflow API¶
This tutorial builds on the regular Airflow Tutorial and focuses specifically on writing data pipelines using the Taskflow API paradigm which is introduced as part of Airflow 2.0 and contrasts this with DAGs written using the traditional paradigm.
The data pipeline chosen here is a simple ETL pattern with three separate tasks for Extract, Transform, and Load.
Example “Taskflow API” ETL Pipeline¶
Here is very simple ETL pipeline using the Taskflow API paradigm. A more detailed explanation is given below.
import json
from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
# These args will get passed on to each operator
# You can override them on a per-task basis during operator initialization
default_args = {
'owner': 'airflow',
}
@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2), tags=['example'])
def tutorial_taskflow_api_etl():
"""
### TaskFlow API Tutorial Documentation
This is a simple ETL data pipeline example which demonstrates the use of
the TaskFlow API using three simple tasks for Extract, Transform, and Load.
Documentation that goes along with the Airflow TaskFlow API tutorial is
located
[here](https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html)
"""
@task()
def extract():
"""
#### Extract task
A simple Extract task to get data ready for the rest of the data
pipeline. In this case, getting data is simulated by reading from a
hardcoded JSON string.
"""
data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'
order_data_dict = json.loads(data_string)
return order_data_dict
@task(multiple_outputs=True)
def transform(order_data_dict: dict):
"""
#### Transform task
A simple Transform task which takes in the collection of order data and
computes the total order value.
"""
total_order_value = 0
for value in order_data_dict.values():
total_order_value += value
return {"total_order_value": total_order_value}
@task()
def load(total_order_value: float):
"""
#### Load task
A simple Load task which takes in the result of the Transform task and
instead of saving it to end user review, just prints it out.
"""
print(f"Total order value is: {total_order_value:.2f}")
order_data = extract()
order_summary = transform(order_data)
load(order_summary["total_order_value"])
tutorial_etl_dag = tutorial_taskflow_api_etl()
It’s a DAG definition file¶
If this is the first DAG file you are looking at, please note that this Python script is interpreted by Airflow and is a configuration file for your data pipeline. For a complete introduction to DAG files, please look at the core Airflow tutorial which covers DAG structure and definitions extensively.
Instantiate a DAG¶
We are creating a DAG which is the collection of our tasks with dependencies between
the tasks. This is a very simple definition, since we just want the DAG to be run
when we set this up with Airflow, without any retries or complex scheduling.
In this example, please notice that we are creating this DAG using the @dag
decorator
as shown below, with the python function name acting as the DAG identifier.
@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2), tags=['example'])
def tutorial_taskflow_api_etl():
"""
### TaskFlow API Tutorial Documentation
This is a simple ETL data pipeline example which demonstrates the use of
the TaskFlow API using three simple tasks for Extract, Transform, and Load.
Documentation that goes along with the Airflow TaskFlow API tutorial is
located
[here](https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html)
"""
Tasks¶
In this data pipeline, tasks are created based on Python functions using the @task
decorator
as shown below. The function name acts as a unique identifier for the task.
@task()
def extract():
"""
#### Extract task
A simple Extract task to get data ready for the rest of the data
pipeline. In this case, getting data is simulated by reading from a
hardcoded JSON string.
"""
data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'
order_data_dict = json.loads(data_string)
return order_data_dict
The returned value, which in this case is a dictionary, will be made available for use in later tasks.
The Transform and Load tasks are created in the same manner as the Extract task shown above.
Main flow of the DAG¶
Now that we have the Extract, Transform, and Load tasks defined based on the Python functions, we can move to the main part of the DAG.
order_data = extract()
order_summary = transform(order_data)
load(order_summary["total_order_value"])
That’s it, we are done! We have invoked the Extract task, obtained the order data from there and sent it over to the Transform task for summarization, and then invoked the Load task with the summarized data. The dependencies between the tasks and the passing of data between these tasks which could be running on different workers on different nodes on the network is all handled by Airflow.
Now to actually enable this to be run as a DAG, we invoke the python function
tutorial_taskflow_api_etl
set up using the @dag
decorator earlier, as shown below.
tutorial_etl_dag = tutorial_taskflow_api_etl()
But how?¶
For experienced Airflow DAG authors, this is startlingly simple! Let’s contrast this with how this DAG had to be written before Airflow 2.0 below:
import json
from textwrap import dedent
# The DAG object; we'll need this to instantiate a DAG
from airflow import DAG
# Operators; we need this to operate!
from airflow.operators.python import PythonOperator
from airflow.utils.dates import days_ago
# These args will get passed on to each operator
# You can override them on a per-task basis during operator initialization
default_args = {
'owner': 'airflow',
}
with DAG(
'tutorial_etl_dag',
default_args=default_args,
description='ETL DAG tutorial',
schedule_interval=None,
start_date=days_ago(2),
tags=['example'],
) as dag:
dag.doc_md = __doc__
def extract(**kwargs):
ti = kwargs['ti']
data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'
ti.xcom_push('order_data', data_string)
def transform(**kwargs):
ti = kwargs['ti']
extract_data_string = ti.xcom_pull(task_ids='extract', key='order_data')
order_data = json.loads(extract_data_string)
total_order_value = 0
for value in order_data.values():
total_order_value += value
total_value = {"total_order_value": total_order_value}
total_value_json_string = json.dumps(total_value)
ti.xcom_push('total_order_value', total_value_json_string)
def load(**kwargs):
ti = kwargs['ti']
total_value_string = ti.xcom_pull(task_ids='transform', key='total_order_value')
total_order_value = json.loads(total_value_string)
print(total_order_value)
extract_task = PythonOperator(
task_id='extract',
python_callable=extract,
)
extract_task.doc_md = dedent(
"""\
#### Extract task
A simple Extract task to get data ready for the rest of the data pipeline.
In this case, getting data is simulated by reading from a hardcoded JSON string.
This data is then put into xcom, so that it can be processed by the next task.
"""
)
transform_task = PythonOperator(
task_id='transform',
python_callable=transform,
)
transform_task.doc_md = dedent(
"""\
#### Transform task
A simple Transform task which takes in the collection of order data from xcom
and computes the total order value.
This computed value is then put into xcom, so that it can be processed by the next task.
"""
)
load_task = PythonOperator(
task_id='load',
python_callable=load,
)
load_task.doc_md = dedent(
"""\
#### Load task
A simple Load task which takes in the result of the Transform task, by reading it
from xcom and instead of saving it to end user review, just prints it out.
"""
)
extract_task >> transform_task >> load_task
All of the processing shown above is being done in the new Airflow 2.0 dag as well, but it is all abstracted from the DAG developer.
Let’s examine this in detail by looking at the Transform task in isolation since it is in the middle of the data pipeline. In Airflow 1.x, this task is defined as shown below:
def transform(**kwargs):
ti = kwargs['ti']
extract_data_string = ti.xcom_pull(task_ids='extract', key='order_data')
order_data = json.loads(extract_data_string)
total_order_value = 0
for value in order_data.values():
total_order_value += value
total_value = {"total_order_value": total_order_value}
total_value_json_string = json.dumps(total_value)
ti.xcom_push('total_order_value', total_value_json_string)
As we see here, the data being processed in the Transform function is passed to it using Xcom variables. In turn, the summarized data from the Transform function is also placed into another Xcom variable which will then be used by the Load task.
Contrasting that with Taskflow API in Airflow 2.0 as shown below.
@task(multiple_outputs=True)
def transform(order_data_dict: dict):
"""
#### Transform task
A simple Transform task which takes in the collection of order data and
computes the total order value.
"""
total_order_value = 0
for value in order_data_dict.values():
total_order_value += value
return {"total_order_value": total_order_value}
All of the Xcom usage for data passing between these tasks is abstracted away from the DAG author in Airflow 2.0. However, Xcom variables are used behind the scenes and can be viewed using the Airflow UI as necessary for debugging or DAG monitoring.
Similarly, task dependencies are automatically generated within TaskFlows based on the functional invocation of tasks. In Airflow 1.x, tasks had to be explicitly created and dependencies specified as shown below.
extract_task = PythonOperator(
task_id='extract',
python_callable=extract,
)
extract_task.doc_md = dedent(
"""\
#### Extract task
A simple Extract task to get data ready for the rest of the data pipeline.
In this case, getting data is simulated by reading from a hardcoded JSON string.
This data is then put into xcom, so that it can be processed by the next task.
"""
)
transform_task = PythonOperator(
task_id='transform',
python_callable=transform,
)
transform_task.doc_md = dedent(
"""\
#### Transform task
A simple Transform task which takes in the collection of order data from xcom
and computes the total order value.
This computed value is then put into xcom, so that it can be processed by the next task.
"""
)
load_task = PythonOperator(
task_id='load',
python_callable=load,
)
load_task.doc_md = dedent(
"""\
#### Load task
A simple Load task which takes in the result of the Transform task, by reading it
from xcom and instead of saving it to end user review, just prints it out.
"""
)
extract_task >> transform_task >> load_task
In contrast, with the Taskflow API in Airflow 2.0, the invocation itself automatically generates the dependencies as shown below.
order_data = extract()
order_summary = transform(order_data)
load(order_summary["total_order_value"])
Using the Taskflow API with Virtual Environments¶
As of Airflow 2.0.3, you will have the ability to use the Taskflow API with a virtual environment. This added functionality will allow a much more comprehensive range of use-cases for the Taskflow API, as you will not be limited to the packages and system libraries of the Airflow worker.
To run your Airflow task in a virtual environment, switch your @task
decorator to a @task.virtualenv
decorator. The @task.virtualenv
decorator will allow you to create a new virtualenv with custom libraries
and even a different python version to run your function.
@task.virtualenv(
use_dill=True,
system_site_packages=False,
requirements=['funcsigs'],
)
def extract():
"""
#### Extract task
A simple Extract task to get data ready for the rest of the data
pipeline. In this case, getting data is simulated by reading from a
hardcoded JSON string.
"""
data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'
order_data_dict = json.loads(data_string)
return order_data_dict
This option should allow for far greater flexibility for users who wish to keep their workflows more simple and pythonic.
Multiple outputs inference¶
Tasks can also infer multiple outputs by using dict python typing.
@task
def identity_dict(x: int, y: int) -> Dict[str, int]:
return {"x": x, "y": y}
By using the typing Dict
for the function return type, the multiple_outputs
parameter
is automatically set to true.
Note, If you manually set the multiple_outputs
parameter the inference is disabled and
the parameter value is used.
Adding dependencies to decorated tasks from regular tasks¶
The above tutorial shows how to create dependencies between python-based tasks. However, it is
quite possible while writing a DAG to have some pre-existing tasks such as BashOperator
or FileSensor
based tasks which need to be run first before a python-based task is run.
Building this dependency is shown in the code below:
@task()
def extract_from_file():
"""
#### Extract from file task
A simple Extract task to get data ready for the rest of the data
pipeline, by reading the data from a file into a pandas dataframe
"""
order_data_file = '/tmp/order_data.csv'
order_data_df = pd.read_csv(order_data_file)
file_task = FileSensor(task_id='check_file', filepath='/tmp/order_data.csv')
order_data = extract_from_file()
file_task >> order_data
In the above code block, a new python-based task is defined as extract_from_file
which
reads the data from a known file location.
In the main DAG, a new FileSensor
task is defined to check for this file. Please note
that this is a Sensor task which waits for the file.
Finally, a dependency between this Sensor task and the python-based task is specified.
What’s Next?¶
You have seen how simple it is to write DAGs using the Taskflow API paradigm within Airflow 2.0. Please do
read the Concepts section for detailed explanation of Airflow concepts such as DAGs, Tasks,
Operators, and more. There’s also a whole section on the TaskFlow API and the @task
decorator.