Tutorial on the Taskflow API

This tutorial builds on the regular Airflow Tutorial and focuses specifically on writing data pipelines using the Taskflow API paradigm which is introduced as part of Airflow 2.0 and contrasts this with DAGs written using the traditional paradigm.

The data pipeline chosen here is a simple ETL pattern with three separate tasks for Extract, Transform, and Load.

Example "Taskflow API" ETL Pipeline

Here is very simple ETL pipeline using the Taskflow API paradigm. A more detailed explanation is given below.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source


import json

from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
# These args will get passed on to each operator
# You can override them on a per-task basis during operator initialization
default_args = {
    'owner': 'airflow',
}
@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2))
def tutorial_taskflow_api_etl():
    """
    ### TaskFlow API Tutorial Documentation
    This is a simple ETL data pipeline example which demonstrates the use of
    the TaskFlow API using three simple tasks for Extract, Transform, and Load.
    Documentation that goes along with the Airflow TaskFlow API tutorial is
    located
    [here](https://airflow.apache.org/docs/stable/tutorial_taskflow_api.html)
    """
    @task()
    def extract():
        """
        #### Extract task
        A simple Extract task to get data ready for the rest of the data
        pipeline. In this case, getting data is simulated by reading from a
        hardcoded JSON string.
        """
        data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'

        order_data_dict = json.loads(data_string)
        return order_data_dict
    @task(multiple_outputs=True)
    def transform(order_data_dict: dict):
        """
        #### Transform task
        A simple Transform task which takes in the collection of order data and
        computes the total order value.
        """
        total_order_value = 0

        for value in order_data_dict.values():
            total_order_value += value

        return {"total_order_value": total_order_value}
    @task()
    def load(total_order_value: float):
        """
        #### Load task
        A simple Load task which takes in the result of the Transform task and
        instead of saving it to end user review, just prints it out.
        """

        print("Total order value is: %.2f" % total_order_value)
    order_data = extract()
    order_summary = transform(order_data)
    load(order_summary["total_order_value"])
tutorial_etl_dag = tutorial_taskflow_api_etl()

It's a DAG definition file

If this is the first DAG file you are looking at, please note that this Python script is interpreted by Airflow and is a configuration file for your data pipeline. For a complete introduction to DAG files, please look at the core Airflow tutorial which covers DAG structure and definitions extensively.

Instantiate a DAG

We are creating a DAG which is the collection of our tasks with dependencies between the tasks. This is a very simple definition, since we just want the DAG to be run when we set this up with Airflow, without any retries or complex scheduling. In this example, please notice that we are creating this DAG using the @dag decorator as shown below, with the python function name acting as the DAG identifier.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source

@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2))
def tutorial_taskflow_api_etl():
    """
    ### TaskFlow API Tutorial Documentation
    This is a simple ETL data pipeline example which demonstrates the use of
    the TaskFlow API using three simple tasks for Extract, Transform, and Load.
    Documentation that goes along with the Airflow TaskFlow API tutorial is
    located
    [here](https://airflow.apache.org/docs/stable/tutorial_taskflow_api.html)
    """

Tasks

In this data pipeline, tasks are created based on Python functions using the @task decorator as shown below. The function name acts as a unique identifier for the task.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source

    @task()
    def extract():
        """
        #### Extract task
        A simple Extract task to get data ready for the rest of the data
        pipeline. In this case, getting data is simulated by reading from a
        hardcoded JSON string.
        """
        data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'

        order_data_dict = json.loads(data_string)
        return order_data_dict

The returned value, which in this case is a dictionary, will be made available for use in later tasks.

The Transform and Load tasks are created in the same manner as the Extract task shown above.

Main flow of the DAG

Now that we have the Extract, Transform, and Load tasks defined based on the Python functions, we can move to the main part of the DAG.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source

    order_data = extract()
    order_summary = transform(order_data)
    load(order_summary["total_order_value"])

That's it, we are done! We have invoked the Extract task, obtained the order data from there and sent it over to the Transform task for summarization, and then invoked the Load task with the summarized data. The dependencies between the tasks and the passing of data between these tasks which could be running on different workers on different nodes on the network is all handled by Airflow.

Now to actually enable this to be run as a DAG, we invoke the python function tutorial_taskflow_api_etl set up using the @dag decorator earlier, as shown below.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source

tutorial_etl_dag = tutorial_taskflow_api_etl()

But how?

For experienced Airflow DAG authors, this is startlingly simple! Let's contrast this with how this DAG had to be written before Airflow 2.0 below:

airflow/example_dags/tutorial_etl_dag.pyView Source


import json

# The DAG object; we'll need this to instantiate a DAG
from airflow import DAG

# Operators; we need this to operate!
from airflow.operators.python import PythonOperator
from airflow.utils.dates import days_ago
# These args will get passed on to each operator
# You can override them on a per-task basis during operator initialization
default_args = {
    'owner': 'airflow',
}
with DAG(
    'tutorial_etl_dag',
    default_args=default_args,
    description='ETL DAG tutorial',
    schedule_interval=None,
    start_date=days_ago(2),
    tags=['example'],
) as dag:
    dag.doc_md = __doc__
    def extract(**kwargs):
        ti = kwargs['ti']
        data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}'
        ti.xcom_push('order_data', data_string)
    def transform(**kwargs):
        ti = kwargs['ti']
        extract_data_string = ti.xcom_pull(task_ids='extract', key='order_data')
        order_data = json.loads(extract_data_string)

        total_order_value = 0
        for value in order_data.values():
            total_order_value += value

        total_value = {"total_order_value": total_order_value}
        total_value_json_string = json.dumps(total_value)
        ti.xcom_push('total_order_value', total_value_json_string)
    def load(**kwargs):
        ti = kwargs['ti']
        total_value_string = ti.xcom_pull(task_ids='transform', key='total_order_value')
        total_order_value = json.loads(total_value_string)

        print(total_order_value)
    extract_task = PythonOperator(
        task_id='extract',
        python_callable=extract,
    )
    extract_task.doc_md = """\
#### Extract task
A simple Extract task to get data ready for the rest of the data pipeline.
In this case, getting data is simulated by reading from a hardcoded JSON string.
This data is then put into xcom, so that it can be processed by the next task.
"""

    transform_task = PythonOperator(
        task_id='transform',
        python_callable=transform,
    )
    transform_task.doc_md = """\
#### Transform task
A simple Transform task which takes in the collection of order data from xcom
and computes the total order value.
This computed value is then put into xcom, so that it can be processed by the next task.
"""

    load_task = PythonOperator(
        task_id='load',
        python_callable=load,
    )
    load_task.doc_md = """\
#### Load task
A simple Load task which takes in the result of the Transform task, by reading it
from xcom and instead of saving it to end user review, just prints it out.
"""

    extract_task >> transform_task >> load_task

All of the processing shown above is being done in the new Airflow 2.0 dag as well, but it is all abstracted from the DAG developer.

Let's examine this in detail by looking at the Transform task in isolation since it is in the middle of the data pipeline. In Airflow 1.x, this task is defined as shown below:

airflow/example_dags/tutorial_etl_dag.pyView Source

    def transform(**kwargs):
        ti = kwargs['ti']
        extract_data_string = ti.xcom_pull(task_ids='extract', key='order_data')
        order_data = json.loads(extract_data_string)

        total_order_value = 0
        for value in order_data.values():
            total_order_value += value

        total_value = {"total_order_value": total_order_value}
        total_value_json_string = json.dumps(total_value)
        ti.xcom_push('total_order_value', total_value_json_string)

As we see here, the data being processed in the Transform function is passed to it using Xcom variables. In turn, the summarized data from the Transform function is also placed into another Xcom variable which will then be used by the Load task.

Contrasting that with Taskflow API in Airflow 2.0 as shown below.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source

    @task(multiple_outputs=True)
    def transform(order_data_dict: dict):
        """
        #### Transform task
        A simple Transform task which takes in the collection of order data and
        computes the total order value.
        """
        total_order_value = 0

        for value in order_data_dict.values():
            total_order_value += value

        return {"total_order_value": total_order_value}

All of the Xcom usage for data passing between these tasks is abstracted away from the DAG author in Airflow 2.0. However, Xcom variables are used behind the scenes and can be viewed using the Airflow UI as necessary for debugging or DAG monitoring.

Similarly, task dependencies are automatically generated within TaskFlows based on the functional invocation of tasks. In Airflow 1.x, tasks had to be explicitly created and dependencies specified as shown below.

airflow/example_dags/tutorial_etl_dag.pyView Source

    extract_task = PythonOperator(
        task_id='extract',
        python_callable=extract,
    )
    extract_task.doc_md = """\
#### Extract task
A simple Extract task to get data ready for the rest of the data pipeline.
In this case, getting data is simulated by reading from a hardcoded JSON string.
This data is then put into xcom, so that it can be processed by the next task.
"""

    transform_task = PythonOperator(
        task_id='transform',
        python_callable=transform,
    )
    transform_task.doc_md = """\
#### Transform task
A simple Transform task which takes in the collection of order data from xcom
and computes the total order value.
This computed value is then put into xcom, so that it can be processed by the next task.
"""

    load_task = PythonOperator(
        task_id='load',
        python_callable=load,
    )
    load_task.doc_md = """\
#### Load task
A simple Load task which takes in the result of the Transform task, by reading it
from xcom and instead of saving it to end user review, just prints it out.
"""

    extract_task >> transform_task >> load_task

In contrast, with the Taskflow API in Airflow 2.0, the invocation itself automatically generates the dependencies as shown below.

airflow/example_dags/tutorial_taskflow_api_etl.pyView Source

    order_data = extract()
    order_summary = transform(order_data)
    load(order_summary["total_order_value"])

Multiple outputs inference

Tasks can also infer multiple outputs by using dict python typing.

@task
def identity_dict(x: int, y: int) -> Dict[str, int]:
    return {"x": x, "y": y}

By using the typing Dict for the function return type, the multiple_outputs parameter is automatically set to true.

Note, If you manually set the multiple_outputs parameter the inference is disabled and the parameter value is used.

What's Next?

You have seen how simple it is to write DAGs using the Taskflow API paradigm within Airflow 2.0. Please do read the Concepts page for detailed explanation of Airflow concepts such as DAGs, Tasks, Operators, etc, and the Python task decorator in particular.

More details about the Taskflow API, can be found as part of the Airflow Improvement Proposal AIP-31: "Taskflow API" for clearer/simpler DAG definition and specifically within the Concepts guide at Concepts - Taskflow API.

Was this entry helpful?