Source code for airflow.contrib.sensors.python_sensor
# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from airflow.sensors.base_sensor_operator import BaseSensorOperator
from airflow.utils.decorators import apply_defaults
[docs]class PythonSensor(BaseSensorOperator):
    """
    Waits for a Python callable to return True.
    User could put input argument in templates_dict
    e.g ``templates_dict = {'start_ds': 1970}``
    and access the argument by calling ``kwargs['templates_dict']['start_ds']``
    in the the callable
    :param python_callable: A reference to an object that is callable
    :type python_callable: python callable
    :param op_kwargs: a dictionary of keyword arguments that will get unpacked
        in your function
    :type op_kwargs: dict
    :param op_args: a list of positional arguments that will get unpacked when
        calling your callable
    :type op_args: list
    :param provide_context: if set to true, Airflow will pass a set of
        keyword arguments that can be used in your function. This set of
        kwargs correspond exactly to what you can use in your jinja
        templates. For this to work, you need to define `**kwargs` in your
        function header.
    :type provide_context: bool
    :param templates_dict: a dictionary where the values are templates that
        will get templated by the Airflow engine sometime between
        ``__init__`` and ``execute`` takes place and are made available
        in your callable's context after the template has been applied.
    :type templates_dict: dict of str
    """
[docs]    template_fields = ('templates_dict',) 
    @apply_defaults
    def __init__(
            self,
            python_callable,
            op_args=None,
            op_kwargs=None,
            provide_context=False,
            templates_dict=None,
            *args, **kwargs):
        super(PythonSensor, self).__init__(*args, **kwargs)
        self.python_callable = python_callable
        self.op_args = op_args or []
        self.op_kwargs = op_kwargs or {}
        self.provide_context = provide_context
        self.templates_dict = templates_dict
[docs]    def poke(self, context):
        if self.provide_context:
            context.update(self.op_kwargs)
            context['templates_dict'] = self.templates_dict
            self.op_kwargs = context
        self.log.info("Poking callable: %s", str(self.python_callable))
        return_value = self.python_callable(*self.op_args, **self.op_kwargs)
        return bool(return_value)