PythonOperator¶
Use the PythonOperator to execute
Python callables.
def print_context(ds, **kwargs):
    pprint(kwargs)
    print(ds)
    return 'Whatever you return gets printed in the logs'
run_this = PythonOperator(
    task_id='print_the_context',
    provide_context=True,
    python_callable=print_context,
    dag=dag,
)
Passing in arguments¶
Use the op_args and op_kwargs arguments to pass additional arguments
to the Python callable.
def my_sleeping_function(random_base):
    """This is a function that will run within the DAG execution"""
    time.sleep(random_base)
# Generate 5 sleeping tasks, sleeping from 0.0 to 0.4 seconds respectively
for i in range(5):
    task = PythonOperator(
        task_id='sleep_for_' + str(i),
        python_callable=my_sleeping_function,
        op_kwargs={'random_base': float(i) / 10},
        dag=dag,
    )
    run_this >> task
Templating¶
When you set the provide_context argument to True, Airflow passes in
an additional set of keyword arguments: one for each of the Jinja
template variables and a templates_dict argument.
The templates_dict argument is templated, so each value in the dictionary
is evaluated as a Jinja template.