airflow.models.dag¶
Module Contents¶
- 
airflow.models.dag.get_last_dagrun(dag_id, session, include_externally_triggered=False)[source]¶
- 
Returns the last dag run for a dag, None if there was none.
- 
Last dag run can be any type of run eg. scheduled or backfilled.
- 
Overridden DagRuns are ignored.
- 
class airflow.models.dag.DAG(dag_id, description=None, schedule_interval=timedelta(days=1), start_date=None, end_date=None, full_filepath=None, template_searchpath=None, template_undefined=None, user_defined_macros=None, user_defined_filters=None, default_args=None, concurrency=conf.getint('core', 'dag_concurrency'), max_active_runs=conf.getint('core', 'max_active_runs_per_dag'), dagrun_timeout=None, sla_miss_callback=None, default_view=None, orientation=conf.get('webserver', 'dag_orientation'), catchup=conf.getboolean('scheduler', 'catchup_by_default'), on_success_callback=None, on_failure_callback=None, doc_md=None, params=None, access_control=None, is_paused_upon_creation=None, jinja_environment_kwargs=None, tags=None)[source]¶
- Bases: - airflow.dag.base_dag.BaseDag,- airflow.utils.log.logging_mixin.LoggingMixin- A dag (directed acyclic graph) is a collection of tasks with directional dependencies. A dag also has a schedule, a start date and an end date (optional). For each schedule, (say daily or hourly), the DAG needs to run each individual tasks as their dependencies are met. Certain tasks have the property of depending on their own past, meaning that they can’t run until their previous schedule (and upstream tasks) are completed. - DAGs essentially act as namespaces for tasks. A task_id can only be added once to a DAG. - Parameters
- dag_id (str) – The id of the DAG 
- description (str) – The description for the DAG to e.g. be shown on the webserver 
- schedule_interval (datetime.timedelta or dateutil.relativedelta.relativedelta or str that acts as a cron expression) – Defines how often that DAG runs, this timedelta object gets added to your latest task instance’s execution_date to figure out the next schedule 
- start_date (datetime.datetime) – The timestamp from which the scheduler will attempt to backfill 
- end_date (datetime.datetime) – A date beyond which your DAG won’t run, leave to None for open ended scheduling 
- template_searchpath (str or list[str]) – This list of folders (non relative) defines where jinja will look for your templates. Order matters. Note that jinja/airflow includes the path of your DAG file by default 
- template_undefined (jinja2.Undefined) – Template undefined type. 
- user_defined_macros (dict) – a dictionary of macros that will be exposed in your jinja templates. For example, passing - dict(foo='bar')to this argument allows you to- {{ foo }}in all jinja templates related to this DAG. Note that you can pass any type of object here.
- user_defined_filters (dict) – a dictionary of filters that will be exposed in your jinja templates. For example, passing - dict(hello=lambda name: 'Hello %s' % name)to this argument allows you to- {{ 'world' | hello }}in all jinja templates related to this DAG.
- default_args (dict) – A dictionary of default parameters to be used as constructor keyword parameters when initialising operators. Note that operators have the same hook, and precede those defined here, meaning that if your dict contains ‘depends_on_past’: True here and ‘depends_on_past’: False in the operator’s call default_args, the actual value will be False. 
- params (dict) – a dictionary of DAG level parameters that are made accessible in templates, namespaced under params. These params can be overridden at the task level. 
- concurrency (int) – the number of task instances allowed to run concurrently 
- max_active_runs (int) – maximum number of active DAG runs, beyond this number of DAG runs in a running state, the scheduler won’t create new active DAG runs 
- dagrun_timeout (datetime.timedelta) – specify how long a DagRun should be up before timing out / failing, so that new DagRuns can be created. The timeout is only enforced for scheduled DagRuns, and only once the # of active DagRuns == max_active_runs. 
- sla_miss_callback (types.FunctionType) – specify a function to call when reporting SLA timeouts. 
- default_view (str) – Specify DAG default view (tree, graph, duration, gantt, landing_times) 
- orientation (str) – Specify DAG orientation in graph view (LR, TB, RL, BT) 
- catchup (bool) – Perform scheduler catchup (or only run latest)? Defaults to True 
- on_failure_callback (callable) – A function to be called when a DagRun of this dag fails. A context dictionary is passed as a single parameter to this function. 
- on_success_callback (callable) – Much like the - on_failure_callbackexcept that it is executed when the dag succeeds.
- access_control (dict) – Specify optional DAG-level permissions, e.g., “{‘role1’: {‘can_dag_read’}, ‘role2’: {‘can_dag_read’, ‘can_dag_edit’}}” 
- is_paused_upon_creation (bool or None) – Specifies if the dag is paused when created for the first time. If the dag exists already, this flag will be ignored. If this optional parameter is not specified, the global config setting will be used. 
- jinja_environment_kwargs (dict) – - additional configuration options to be passed to Jinja - Environmentfor template rendering- Example: to avoid Jinja from removing a trailing newline from template strings - DAG(dag_id='my-dag', jinja_environment_kwargs={ 'keep_trailing_newline': True, # some other jinja2 Environment options here } ) 
- tags (List[str]) – List of tags to help filtering DAGS in the UI. 
 
 - 
owner[source]¶
- Return list of all owners found in DAG tasks. - Returns
- Comma separated list of owners in DAG tasks 
- Return type
 
 - 
concurrency_reached[source]¶
- Returns a boolean indicating whether the concurrency limit for this DAG has been reached 
 - 
normalized_schedule_interval[source]¶
- Returns Normalized Schedule Interval. This is used internally by the Scheduler to schedule DAGs. - Converts Cron Preset to a Cron Expression (e.g - @monthlyto- 0 0 1 * *)
- If Schedule Interval is “@once” return “None” 
- If not (1) or (2) returns schedule_interval 
 
 - 
roots[source]¶
- Return nodes with no parents. These are first to execute and are called roots or root nodes. 
 - 
leaves[source]¶
- Return nodes with no children. These are last to execute and are called leaves or leaf nodes. 
 - 
is_fixed_time_schedule(self)[source]¶
- Figures out if the DAG schedule has a fixed time (e.g. 3 AM). - Returns
- True if the schedule has a fixed time, False if not. 
 
 - 
following_schedule(self, dttm)[source]¶
- Calculates the following schedule for this dag in UTC. - Parameters
- dttm – utc datetime 
- Returns
- utc datetime 
 
 - 
previous_schedule(self, dttm)[source]¶
- Calculates the previous schedule for this dag in UTC - Parameters
- dttm – utc datetime 
- Returns
- utc datetime 
 
 - 
get_run_dates(self, start_date, end_date=None)[source]¶
- Returns a list of dates between the interval received as parameter using this dag’s schedule interval. Returned dates can be used for execution dates. - Parameters
- start_date (datetime) – the start date of the interval 
- end_date (datetime) – the end date of the interval, defaults to timezone.utcnow() 
 
- Returns
- a list of dates within the interval following the dag’s schedule 
- Return type
 
 - 
normalize_schedule(self, dttm)[source]¶
- Returns dttm + interval unless dttm is first interval then it returns dttm 
 - 
handle_callback(self, dagrun, success=True, reason=None, session=None)[source]¶
- Triggers the appropriate callback depending on the value of success, namely the on_failure_callback or on_success_callback. This method gets the context of a single TaskInstance part of this DagRun and passes that to the callable along with a ‘reason’, primarily to differentiate DagRun failures. - Parameters
- dagrun – DagRun object 
- success – Flag to specify if failure or success callback should be called 
- reason – Completion reason 
- session – Database session 
 
 
 - 
get_active_runs(self)[source]¶
- Returns a list of dag run execution dates currently running - Returns
- List of execution dates 
 
 - 
get_num_active_runs(self, external_trigger=None, session=None)[source]¶
- Returns the number of active “running” dag runs - Parameters
- external_trigger (bool) – True for externally triggered active dag runs 
- session – 
 
- Returns
- number greater than 0 for active dag runs 
 
 - 
get_dagrun(self, execution_date, session=None)[source]¶
- Returns the dag run for a given execution date if it exists, otherwise none. - Parameters
- execution_date – The execution date of the DagRun to find. 
- session – 
 
- Returns
- The DagRun if found, otherwise None. 
 
 - 
get_dagruns_between(self, start_date, end_date, session=None)[source]¶
- Returns the list of dag runs between start_date (inclusive) and end_date (inclusive). - Parameters
- start_date – The starting execution date of the DagRun to find. 
- end_date – The ending execution date of the DagRun to find. 
- session – 
 
- Returns
- The list of DagRuns found. 
 
 - 
set_dependency(self, upstream_task_id, downstream_task_id)[source]¶
- Simple utility method to set dependency between two tasks that already have been added to the DAG using add_task() 
 - 
topological_sort(self)[source]¶
- Sorts tasks in topographical order, such that a task comes after any of its upstream dependencies. - Heavily inspired by: http://blog.jupo.org/2012/04/06/topological-sorting-acyclic-directed-graphs/ - Returns
- list of tasks in topological order 
 
 - 
set_dag_runs_state(self, state=State.RUNNING, session=None, start_date=None, end_date=None)[source]¶
 - 
clear(self, start_date=None, end_date=None, only_failed=False, only_running=False, confirm_prompt=False, include_subdags=True, include_parentdag=True, reset_dag_runs=True, dry_run=False, session=None, get_tis=False, recursion_depth=0, max_recursion_depth=None, dag_bag=None)[source]¶
- Clears a set of task instances associated with the current dag for a specified date range. - Parameters
- start_date (datetime.datetime or None) – The minimum execution_date to clear 
- end_date (datetime.datetime or None) – The maximum exeuction_date to clear 
- only_failed (bool) – Only clear failed tasks 
- only_running (bool) – Only clear running tasks. 
- confirm_prompt (bool) – Ask for confirmation 
- include_subdags (bool) – Clear tasks in subdags and clear external tasks indicated by ExternalTaskMarker 
- include_parentdag (bool) – Clear tasks in the parent dag of the subdag. 
- reset_dag_runs (bool) – Set state of dag to RUNNING 
- dry_run (bool) – Find the tasks to clear but don’t clear them. 
- session (sqlalchemy.orm.session.Session) – The sqlalchemy session to use 
- get_tis (bool) – Return the sqlachemy query for finding the TaskInstance without clearing the tasks 
- recursion_depth (int) – The recursion depth of nested calls to DAG.clear(). 
- max_recursion_depth (int) – The maximum recusion depth allowed. This is determined by the first encountered ExternalTaskMarker. Default is None indicating no ExternalTaskMarker has been encountered. 
- dag_bag (airflow.models.dagbag.DagBag) – The DagBag used to find the dags 
 
 
 - 
classmethod clear_dags(cls, dags, start_date=None, end_date=None, only_failed=False, only_running=False, confirm_prompt=False, include_subdags=True, include_parentdag=False, reset_dag_runs=True, dry_run=False)[source]¶
 - 
sub_dag(self, task_regex, include_downstream=False, include_upstream=True)[source]¶
- Returns a subset of the current dag as a deep copy of the current dag based on a regex that should match one or many tasks, and includes upstream and downstream neighbours based on the flag passed. 
 - 
add_task(self, task)[source]¶
- Add a task to the DAG - Parameters
- task (task) – the task you want to add 
 
 - 
add_tasks(self, tasks)[source]¶
- Add a list of tasks to the DAG - Parameters
- tasks (list of tasks) – a lit of tasks you want to add 
 
 - 
run(self, start_date=None, end_date=None, mark_success=False, local=False, executor=None, donot_pickle=conf.getboolean('core', 'donot_pickle'), ignore_task_deps=False, ignore_first_depends_on_past=False, pool=None, delay_on_limit_secs=1.0, verbose=False, conf=None, rerun_failed_tasks=False, run_backwards=False)[source]¶
- Runs the DAG. - Parameters
- start_date (datetime.datetime) – the start date of the range to run 
- end_date (datetime.datetime) – the end date of the range to run 
- mark_success (bool) – True to mark jobs as succeeded without running them 
- local (bool) – True to run the tasks using the LocalExecutor 
- executor (airflow.executor.BaseExecutor) – The executor instance to run the tasks 
- donot_pickle (bool) – True to avoid pickling DAG object and send to workers 
- ignore_task_deps (bool) – True to skip upstream tasks 
- ignore_first_depends_on_past (bool) – True to ignore depends_on_past dependencies for the first set of tasks only 
- pool (str) – Resource pool to use 
- delay_on_limit_secs (float) – Time in seconds to wait before next attempt to run dag run when max_active_runs limit has been reached 
- verbose (bool) – Make logging output more verbose 
- conf (dict) – user defined dictionary passed from CLI 
- rerun_failed_tasks – 
- run_backwards – 
 
- Type
- Type
 
 - 
create_dagrun(self, run_id, state, execution_date=None, start_date=None, external_trigger=False, conf=None, session=None)[source]¶
- Creates a dag run from this dag including the tasks associated with this dag. Returns the dag run. - Parameters
- run_id (str) – defines the the run id for this dag run 
- execution_date (datetime.datetime) – the execution date of this dag run 
- state (airflow.utils.state.State) – the state of the dag run 
- start_date (datetime) – the date this dag run should be evaluated 
- external_trigger (bool) – whether this dag run is externally triggered 
- conf (dict) – Dict containing configuration/parameters to pass to the DAG 
- session (sqlalchemy.orm.session.Session) – database session 
 
 
 - 
sync_to_db(self, owner=None, sync_time=None, session=None)[source]¶
- Save attributes about this DAG to the DB. Note that this method can be called for both DAGs and SubDAGs. A SubDag is actually a SubDagOperator. - Parameters
- dag (airflow.models.DAG) – the DAG object to save to the DB 
- sync_time (datetime) – The time that the DAG should be marked as sync’ed 
 
- Returns
- None 
 
 - Creating a list of DagTags, if one is missing from the DB, will insert. - Returns
- The DagTag list. 
- Return type
 
 - 
static deactivate_unknown_dags(active_dag_ids, session=None)[source]¶
- Given a list of known DAGs, deactivate any other DAGs that are marked as active in the ORM - Parameters
- active_dag_ids (list[unicode]) – list of DAG IDs that are active 
- Returns
- None 
 
 - 
static deactivate_stale_dags(expiration_date, session=None)[source]¶
- Deactivate any DAGs that were last touched by the scheduler before the expiration date. These DAGs were likely deleted. - Parameters
- expiration_date (datetime) – set inactive DAGs that were touched before this time 
- Returns
- None 
 
 - 
static get_num_task_instances(dag_id, task_ids=None, states=None, session=None)[source]¶
- Returns the number of task instances in the given DAG. 
 - 
test_cycle(self)[source]¶
- Check to see if there are any cycles in the DAG. Returns False if no cycle found, otherwise raises exception. 
 
- 
class airflow.models.dag.DagTag[source]¶
- Bases: - airflow.models.base.Base- A tag name per dag, to allow quick filtering in the DAG view. 
- 
class airflow.models.dag.DagModel[source]¶
- Bases: - airflow.models.base.Base- 
static get_paused_dag_ids(dag_ids, session)[source]¶
- Given a list of dag_ids, get a set of Paused Dag Ids - Parameters
- dag_ids – List of Dag ids 
- session – ORM Session 
 
- Returns
- Paused Dag_ids 
 
 - 
get_dag(self, store_serialized_dags=False)[source]¶
- Creates a dagbag to load and return a DAG. Calling it from UI should set store_serialized_dags = STORE_SERIALIZED_DAGS. There may be a delay for scheduler to write serialized DAG into database, loads from file in this case. FIXME: remove it when webserver does not access to DAG folder in future. 
 - 
create_dagrun(self, run_id, state, execution_date, start_date=None, external_trigger=False, conf=None, session=None)[source]¶
- Creates a dag run from this dag including the tasks associated with this dag. Returns the dag run. - Parameters
- run_id (str) – defines the the run id for this dag run 
- execution_date (datetime.datetime) – the execution date of this dag run 
- state (airflow.utils.state.State) – the state of the dag run 
- start_date (datetime.datetime) – the date this dag run should be evaluated 
- external_trigger (bool) – whether this dag run is externally triggered 
- session (sqlalchemy.orm.session.Session) – database session 
 
 
 - 
set_is_paused(self, is_paused, including_subdags=True, store_serialized_dags=False, session=None)[source]¶
- Pause/Un-pause a DAG. - Parameters
- is_paused – Is the DAG paused 
- including_subdags – whether to include the DAG’s subdags 
- store_serialized_dags – whether to serialize DAGs & store it in DB 
- session – session 
 
 
 - 
classmethod deactivate_deleted_dags(cls, alive_dag_filelocs, session=None)[source]¶
- Set - is_active=Falseon the DAGs for which the DAG files have been removed. Additionally change- is_active=Falseto- Trueif the DAG file exists.- Parameters
- alive_dag_filelocs – file paths of alive DAGs 
- session – ORM Session 
 
 
 
- 
static