airflow.contrib.operators.sagemaker_transform_operator

Module Contents

class airflow.contrib.operators.sagemaker_transform_operator.SageMakerTransformOperator(config, wait_for_completion=True, check_interval=30, max_ingestion_time=None, *args, **kwargs)[source]

Bases: airflow.contrib.operators.sagemaker_base_operator.SageMakerBaseOperator

Initiate a SageMaker transform job.

This operator returns The ARN of the model created in Amazon SageMaker.

Parameters
  • config (dict) –

    The configuration necessary to start a transform job (templated).

    If you need to create a SageMaker transform job based on an existed SageMaker model:

    config = transform_config
    

    If you need to create both SageMaker model and SageMaker Transform job:

    config = {
        'Model': model_config,
        'Transform': transform_config
    }
    

    For details of the configuration parameter of transform_config see SageMaker.Client.create_transform_job()

    For details of the configuration parameter of model_config, See: SageMaker.Client.create_model()

  • aws_conn_id (str) – The AWS connection ID to use.

  • wait_for_completion (bool) – Set to True to wait until the transform job finishes.

  • check_interval (int) – If wait is set to True, the time interval, in seconds, that this operation waits to check the status of the transform job.

  • max_ingestion_time (int) – If wait is set to True, the operation fails if the transform job doesn’t finish within max_ingestion_time seconds. If you set this parameter to None, the operation does not timeout.

create_integer_fields(self)[source]
expand_role(self)[source]
execute(self, context)[source]

Was this entry helpful?