Source code for airflow.operators.check_operator

# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from builtins import str, zip
from typing import Optional, Any, Iterable, Dict, SupportsAbs

from airflow.exceptions import AirflowException
from airflow.hooks.base_hook import BaseHook
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults


[docs]class CheckOperator(BaseOperator): """ Performs checks against a db. The ``CheckOperator`` expects a sql query that will return a single row. Each value on that first row is evaluated using python ``bool`` casting. If any of the values return ``False`` the check is failed and errors out. Note that Python bool casting evals the following as ``False``: * ``False`` * ``0`` * Empty string (``""``) * Empty list (``[]``) * Empty dictionary or set (``{}``) Given a query like ``SELECT COUNT(*) FROM foo``, it will fail only if the count ``== 0``. You can craft much more complex query that could, for instance, check that the table has the same number of rows as the source table upstream, or that the count of today's partition is greater than yesterday's partition, or that a set of metrics are less than 3 standard deviation for the 7 day average. This operator can be used as a data quality check in your pipeline, and depending on where you put it in your DAG, you have the choice to stop the critical path, preventing from publishing dubious data, or on the side and receive email alerts without stopping the progress of the DAG. Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that gets a single record from an external source. :param sql: the sql to be executed. (templated) :type sql: str """
[docs] template_fields = ('sql',) # type: Iterable[str]
[docs] template_ext = ('.hql', '.sql',) # type: Iterable[str]
[docs] ui_color = '#fff7e6'
@apply_defaults def __init__( self, sql, # type: str conn_id=None, # type: Optional[str] *args, **kwargs ): super(CheckOperator, self).__init__(*args, **kwargs) self.conn_id = conn_id self.sql = sql
[docs] def execute(self, context=None): self.log.info('Executing SQL check: %s', self.sql) records = self.get_db_hook().get_first(self.sql) self.log.info('Record: %s', records) if not records: raise AirflowException("The query returned None") elif not all([bool(r) for r in records]): raise AirflowException("Test failed.\nQuery:\n{query}\nResults:\n{records!s}".format( query=self.sql, records=records)) self.log.info("Success.")
[docs] def get_db_hook(self): return BaseHook.get_hook(conn_id=self.conn_id)
[docs]def _convert_to_float_if_possible(s): """ A small helper function to convert a string to a numeric value if appropriate :param s: the string to be converted :type s: str """ try: ret = float(s) except (ValueError, TypeError): ret = s return ret
[docs]class ValueCheckOperator(BaseOperator): """ Performs a simple value check using sql code. Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that gets a single record from an external source. :param sql: the sql to be executed. (templated) :type sql: str """
[docs] __mapper_args__ = { 'polymorphic_identity': 'ValueCheckOperator'
}
[docs] template_fields = ('sql', 'pass_value',) # type: Iterable[str]
[docs] template_ext = ('.hql', '.sql',) # type: Iterable[str]
[docs] ui_color = '#fff7e6'
@apply_defaults def __init__( self, sql, # type: str pass_value, # type: Any tolerance=None, # type: Any conn_id=None, # type: Optional[str] *args, **kwargs ): super(ValueCheckOperator, self).__init__(*args, **kwargs) self.sql = sql self.conn_id = conn_id self.pass_value = str(pass_value) tol = _convert_to_float_if_possible(tolerance) self.tol = tol if isinstance(tol, float) else None self.has_tolerance = self.tol is not None
[docs] def execute(self, context=None): self.log.info('Executing SQL check: %s', self.sql) records = self.get_db_hook().get_first(self.sql) if not records: raise AirflowException("The query returned None") pass_value_conv = _convert_to_float_if_possible(self.pass_value) is_numeric_value_check = isinstance(pass_value_conv, float) tolerance_pct_str = str(self.tol * 100) + '%' if self.has_tolerance else None error_msg = ("Test failed.\nPass value:{pass_value_conv}\n" "Tolerance:{tolerance_pct_str}\n" "Query:\n{sql}\nResults:\n{records!s}").format( pass_value_conv=pass_value_conv, tolerance_pct_str=tolerance_pct_str, sql=self.sql, records=records ) if not is_numeric_value_check: tests = self._get_string_matches(records, pass_value_conv) elif is_numeric_value_check: try: numeric_records = self._to_float(records) except (ValueError, TypeError): raise AirflowException("Converting a result to float failed.\n{}".format(error_msg)) tests = self._get_numeric_matches(numeric_records, pass_value_conv) else: tests = [] if not all(tests): raise AirflowException(error_msg)
[docs] def _to_float(self, records): return [float(record) for record in records]
[docs] def _get_string_matches(self, records, pass_value_conv): return [str(record) == pass_value_conv for record in records]
[docs] def _get_numeric_matches(self, numeric_records, numeric_pass_value_conv): if self.has_tolerance: return [ numeric_pass_value_conv * (1 - self.tol) <= record <= numeric_pass_value_conv * (1 + self.tol) for record in numeric_records ] return [record == numeric_pass_value_conv for record in numeric_records]
[docs] def get_db_hook(self): return BaseHook.get_hook(conn_id=self.conn_id)
[docs]class IntervalCheckOperator(BaseOperator): """ Checks that the values of metrics given as SQL expressions are within a certain tolerance of the ones from days_back before. Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that gets a single record from an external source. :param table: the table name :type table: str :param days_back: number of days between ds and the ds we want to check against. Defaults to 7 days :type days_back: int :param ratio_formula: which formula to use to compute the ratio between the two metrics. Assuming cur is the metric of today and ref is the metric to today - days_back. max_over_min: computes max(cur, ref) / min(cur, ref) relative_diff: computes abs(cur-ref) / ref Default: 'max_over_min' :type ratio_formula: str :param ignore_zero: whether we should ignore zero metrics :type ignore_zero: bool :param metrics_threshold: a dictionary of ratios indexed by metrics :type metrics_threshold: dict """
[docs] __mapper_args__ = { 'polymorphic_identity': 'IntervalCheckOperator'
}
[docs] template_fields = ('sql1', 'sql2') # type: Iterable[str]
[docs] template_ext = ('.hql', '.sql',) # type: Iterable[str]
[docs] ui_color = '#fff7e6'
[docs] ratio_formulas = { 'max_over_min': lambda cur, ref: float(max(cur, ref)) / min(cur, ref), 'relative_diff': lambda cur, ref: float(abs(cur - ref)) / ref,
} @apply_defaults def __init__( self, table, # type: str metrics_thresholds, # type: Dict[str, int] date_filter_column='ds', # type: Optional[str] days_back=-7, # type: SupportsAbs[int] ratio_formula='max_over_min', # type: Optional[str] ignore_zero=True, # type: Optional[bool] conn_id=None, # type: Optional[str] *args, **kwargs ): super(IntervalCheckOperator, self).__init__(*args, **kwargs) if ratio_formula not in self.ratio_formulas: msg_template = "Invalid diff_method: {diff_method}. " \ "Supported diff methods are: {diff_methods}" raise AirflowException( msg_template.format(diff_method=ratio_formula, diff_methods=self.ratio_formulas) ) self.ratio_formula = ratio_formula self.ignore_zero = ignore_zero self.table = table self.metrics_thresholds = metrics_thresholds self.metrics_sorted = sorted(metrics_thresholds.keys()) self.date_filter_column = date_filter_column self.days_back = -abs(days_back) self.conn_id = conn_id sqlexp = ', '.join(self.metrics_sorted) sqlt = "SELECT {sqlexp} FROM {table} WHERE {date_filter_column}=".format( sqlexp=sqlexp, table=table, date_filter_column=date_filter_column ) self.sql1 = sqlt + "'{{ ds }}'" self.sql2 = sqlt + "'{{ macros.ds_add(ds, " + str(self.days_back) + ") }}'"
[docs] def execute(self, context=None): hook = self.get_db_hook() self.log.info('Using ratio formula: %s', self.ratio_formula) self.log.info('Executing SQL check: %s', self.sql2) row2 = hook.get_first(self.sql2) self.log.info('Executing SQL check: %s', self.sql1) row1 = hook.get_first(self.sql1) if not row2: raise AirflowException("The query {} returned None".format(self.sql2)) if not row1: raise AirflowException("The query {} returned None".format(self.sql1)) current = dict(zip(self.metrics_sorted, row1)) reference = dict(zip(self.metrics_sorted, row2)) ratios = {} test_results = {} for m in self.metrics_sorted: cur = current[m] ref = reference[m] threshold = self.metrics_thresholds[m] if cur == 0 or ref == 0: ratios[m] = None test_results[m] = self.ignore_zero else: ratios[m] = self.ratio_formulas[self.ratio_formula](current[m], reference[m]) test_results[m] = ratios[m] < threshold self.log.info( ( "Current metric for %s: %s\n" "Past metric for %s: %s\n" "Ratio for %s: %s\n" "Threshold: %s\n" ), m, cur, m, ref, m, ratios[m], threshold) if not all(test_results.values()): failed_tests = [it[0] for it in test_results.items() if not it[1]] j = len(failed_tests) n = len(self.metrics_sorted) self.log.warning("The following %s tests out of %s failed:", j, n) for k in failed_tests: self.log.warning( "'%s' check failed. %s is above %s", k, ratios[k], self.metrics_thresholds[k] ) raise AirflowException("The following tests have failed:\n {0}".format(", ".join( sorted(failed_tests)))) self.log.info("All tests have passed")
[docs] def get_db_hook(self): return BaseHook.get_hook(conn_id=self.conn_id)
[docs]class ThresholdCheckOperator(BaseOperator): """ Performs a value check using sql code against a mininmum threshold and a maximum threshold. Thresholds can be in the form of a numeric value OR a sql statement that results a numeric. Note that this is an abstract class and get_db_hook needs to be defined. Whereas a get_db_hook is hook that gets a single record from an external source. :param sql: the sql to be executed. (templated) :type sql: str :param min_threshold: numerical value or min threshold sql to be executed (templated) :type min_threshold: numeric or str :param max_threshold: numerical value or max threshold sql to be executed (templated) :type max_threshold: numeric or str """
[docs] template_fields = ('sql', 'min_threshold', 'max_threshold') # type: Iterable[str]
[docs] template_ext = ('.hql', '.sql',) # type: Iterable[str]
@apply_defaults def __init__( self, sql, # type: str min_threshold, # type: Any max_threshold, # type: Any conn_id=None, # type: Optional[str] *args, **kwargs ): super(ThresholdCheckOperator, self).__init__(*args, **kwargs) self.sql = sql self.conn_id = conn_id self.min_threshold = _convert_to_float_if_possible(min_threshold) self.max_threshold = _convert_to_float_if_possible(max_threshold)
[docs] def execute(self, context=None): hook = self.get_db_hook() result = hook.get_first(self.sql)[0][0] if isinstance(self.min_threshold, float): lower_bound = self.min_threshold else: lower_bound = hook.get_first(self.min_threshold)[0][0] if isinstance(self.max_threshold, float): upper_bound = self.max_threshold else: upper_bound = hook.get_first(self.max_threshold)[0][0] meta_data = { "result": result, "task_id": self.task_id, "min_threshold": lower_bound, "max_threshold": upper_bound, "within_threshold": lower_bound <= result <= upper_bound } self.push(meta_data) if not meta_data["within_threshold"]: error_msg = ( 'Threshold Check: "{task_id}" failed.\n' 'DAG: {dag_id}\nTask_id: {task_id}\n' 'Check description: {description}\n' 'SQL: {sql}\n' 'Result: {result} is not within thresholds ' '{min_threshold} and {max_threshold}' ).format( task_id=self.task_id, dag_id=self.dag_id, description=meta_data.get("description"), sql=self.sql, result=round(meta_data.get("result"), 2), min_threshold=meta_data.get("min_threshold"), max_threshold=meta_data.get("max_threshold") ) raise AirflowException(error_msg) self.log.info("Test %s Successful.", self.task_id)
[docs] def push(self, meta_data): """ Optional: Send data check info and metadata to an external database. Default functionality will log metadata. """ info = "\n".join(["""{}: {}""".format(key, item) for key, item in meta_data.items()]) self.log.info("Log from %s:\n%s", self.dag_id, info)
[docs] def get_db_hook(self): return BaseHook.get_hook(conn_id=self.conn_id)

Was this entry helpful?