#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Kubernetes Engine.
"""
from __future__ import annotations
import os
from datetime import datetime
from kubernetes.client import models as k8s
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.kubernetes_engine import (
GKECreateClusterOperator,
GKECreateCustomResourceOperator,
GKEDeleteClusterOperator,
GKEStartKueueInsideClusterOperator,
GKEStartKueueJobOperator,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "kubernetes_engine_kueue"
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]GCP_LOCATION = "europe-west3"
[docs]CLUSTER_NAME = f"gke-kueue-{ENV_ID}".replace("_", "-")
[docs]CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1, "autopilot": {"enabled": True}}
[docs]flavor_conf = """
apiVersion: kueue.x-k8s.io/v1beta1
kind: ResourceFlavor
metadata:
name: default-flavor
"""
[docs]cluster_conf = """
apiVersion: kueue.x-k8s.io/v1beta1
kind: ClusterQueue
metadata:
name: cluster-queue
spec:
namespaceSelector: {}
queueingStrategy: BestEffortFIFO
resourceGroups:
- coveredResources: ["cpu", "memory", "nvidia.com/gpu", "ephemeral-storage"]
flavors:
- name: "default-flavor"
resources:
- name: "cpu"
nominalQuota: 10
- name: "memory"
nominalQuota: 10Gi
- name: "nvidia.com/gpu"
nominalQuota: 10
- name: "ephemeral-storage"
nominalQuota: 10Gi
"""
[docs]QUEUE_NAME = "local-queue"
[docs]local_conf = f"""
apiVersion: kueue.x-k8s.io/v1beta1
kind: LocalQueue
metadata:
namespace: default # LocalQueue under team-a namespace
name: {QUEUE_NAME}
spec:
clusterQueue: cluster-queue # Point to the ClusterQueue
"""
with DAG(
DAG_ID,
schedule="@once", # Override to match your needs
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "kubernetes-engine", "kueue"],
) as dag:
[docs] create_cluster = GKECreateClusterOperator(
task_id="create_cluster",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
body=CLUSTER,
)
# [START howto_operator_gke_install_kueue]
add_kueue_cluster = GKEStartKueueInsideClusterOperator(
task_id="add_kueue_cluster",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
kueue_version="v0.6.2",
)
# [END howto_operator_gke_install_kueue]
create_resource_flavor = GKECreateCustomResourceOperator(
task_id="create_resource_flavor",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
yaml_conf=flavor_conf,
custom_resource_definition=True,
namespaced=False,
)
create_cluster_queue = GKECreateCustomResourceOperator(
task_id="create_cluster_queue",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
yaml_conf=cluster_conf,
custom_resource_definition=True,
namespaced=False,
)
create_local_queue = GKECreateCustomResourceOperator(
task_id="create_local_queue",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
yaml_conf=local_conf,
custom_resource_definition=True,
)
# [START howto_operator_kueue_start_job]
kueue_job_task = GKEStartKueueJobOperator(
task_id="kueue_job_task",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
queue_name=QUEUE_NAME,
namespace="default",
parallelism=3,
image="perl:5.34.0",
cmds=["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"],
name="test-pi",
suspend=True,
container_resources=k8s.V1ResourceRequirements(
requests={
"cpu": 1,
"memory": "200Mi",
},
),
)
# [END howto_operator_kueue_start_job]
delete_cluster = GKEDeleteClusterOperator(
task_id="delete_cluster",
name=CLUSTER_NAME,
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
trigger_rule=TriggerRule.ALL_DONE,
)
(
# TEST SETUP
create_cluster
>> add_kueue_cluster
>> create_resource_flavor
>> create_cluster_queue
>> create_local_queue
# TEST BODY
>> kueue_job_task
# TEST TEARDOWN
>> delete_cluster
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)