#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Kubernetes Engine.
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.kubernetes_engine import (
GKECreateClusterOperator,
GKEDeleteClusterOperator,
GKEDeleteJobOperator,
GKEDescribeJobOperator,
GKEListJobsOperator,
GKEResumeJobOperator,
GKEStartJobOperator,
GKESuspendJobOperator,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "kubernetes_engine_job"
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]GCP_LOCATION = "europe-north1-a"
[docs]CLUSTER_NAME = f"gke-job-{ENV_ID}".replace("_", "-")
[docs]CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1}
[docs]JOB_NAME_DEF = "test-pi-def"
[docs]JOB_NAMESPACE = "default"
with DAG(
DAG_ID,
schedule="@once", # Override to match your needs
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example"],
) as dag:
[docs] create_cluster = GKECreateClusterOperator(
task_id="create_cluster",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
body=CLUSTER,
)
# [START howto_operator_gke_start_job]
job_task = GKEStartJobOperator(
task_id="job_task",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
namespace=JOB_NAMESPACE,
image="perl:5.34.0",
cmds=["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"],
name=JOB_NAME,
)
# [END howto_operator_gke_start_job]
# [START howto_operator_gke_start_job_def]
job_task_def = GKEStartJobOperator(
task_id="job_task_def",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
namespace=JOB_NAMESPACE,
image="perl:5.34.0",
cmds=["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"],
name=JOB_NAME_DEF,
wait_until_job_complete=True,
deferrable=True,
)
# [END howto_operator_gke_start_job_def]
# [START howto_operator_gke_list_jobs]
list_job_task = GKEListJobsOperator(
task_id="list_job_task", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME
)
# [END howto_operator_gke_list_jobs]
# [START howto_operator_gke_describe_job]
describe_job_task = GKEDescribeJobOperator(
task_id="describe_job_task",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
job_name=job_task.output["job_name"],
namespace="default",
cluster_name=CLUSTER_NAME,
)
# [END howto_operator_gke_describe_job]
describe_job_task_def = GKEDescribeJobOperator(
task_id="describe_job_task_def",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
job_name=job_task_def.output["job_name"],
namespace="default",
cluster_name=CLUSTER_NAME,
)
# [START howto_operator_gke_suspend_job]
suspend_job = GKESuspendJobOperator(
task_id="suspend_job",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
name=job_task.output["job_name"],
namespace="default",
)
# [END howto_operator_gke_suspend_job]
# [START howto_operator_gke_resume_job]
resume_job = GKEResumeJobOperator(
task_id="resume_job",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
name=job_task.output["job_name"],
namespace="default",
)
# [END howto_operator_gke_resume_job]
# [START howto_operator_gke_delete_job]
delete_job = GKEDeleteJobOperator(
task_id="delete_job",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
name=JOB_NAME,
namespace=JOB_NAMESPACE,
)
# [END howto_operator_gke_delete_job]
delete_job_def = GKEDeleteJobOperator(
task_id="delete_job_def",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
name=JOB_NAME,
namespace=JOB_NAMESPACE,
)
delete_cluster = GKEDeleteClusterOperator(
task_id="delete_cluster",
name=CLUSTER_NAME,
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
trigger_rule=TriggerRule.ALL_DONE,
)
chain(
create_cluster,
[job_task, job_task_def],
list_job_task,
[describe_job_task, describe_job_task_def],
suspend_job,
resume_job,
[delete_job, delete_job_def],
delete_cluster,
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)