Source code for airflow.providers.amazon.aws.sensors.sagemaker

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

import time
from functools import cached_property
from typing import TYPE_CHECKING, Sequence

from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.sagemaker import LogState, SageMakerHook
from airflow.sensors.base import BaseSensorOperator

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class SageMakerBaseSensor(BaseSensorOperator): """ Contains general sensor behavior for SageMaker. Subclasses should implement get_sagemaker_response() and state_from_response() methods. Subclasses should also implement NON_TERMINAL_STATES and FAILED_STATE methods. """
[docs] ui_color = "#ededed"
def __init__(self, *, aws_conn_id: str | None = "aws_default", resource_type: str = "job", **kwargs): super().__init__(**kwargs) self.aws_conn_id = aws_conn_id self.resource_type = resource_type # only used for logs, to say what kind of resource we are sensing @cached_property
[docs] def hook(self) -> SageMakerHook: return SageMakerHook(aws_conn_id=self.aws_conn_id)
[docs] def poke(self, context: Context): response = self.get_sagemaker_response() if response["ResponseMetadata"]["HTTPStatusCode"] != 200: self.log.info("Bad HTTP response: %s", response) return False state = self.state_from_response(response) self.log.info("%s currently %s", self.resource_type, state) if state in self.non_terminal_states(): return False if state in self.failed_states(): failed_reason = self.get_failed_reason_from_response(response) raise AirflowException( f"Sagemaker {self.resource_type} failed for the following reason: {failed_reason}" ) return True
[docs] def non_terminal_states(self) -> set[str]: """Return states with should not terminate.""" raise NotImplementedError("Please implement non_terminal_states() in subclass")
[docs] def failed_states(self) -> set[str]: """Return states with are considered failed.""" raise NotImplementedError("Please implement failed_states() in subclass")
[docs] def get_sagemaker_response(self) -> dict: """Check status of a SageMaker task.""" raise NotImplementedError("Please implement get_sagemaker_response() in subclass")
[docs] def get_failed_reason_from_response(self, response: dict) -> str: """Extract the reason for failure from an AWS response.""" return "Unknown"
[docs] def state_from_response(self, response: dict) -> str: """Extract the state from an AWS response.""" raise NotImplementedError("Please implement state_from_response() in subclass")
[docs]class SageMakerEndpointSensor(SageMakerBaseSensor): """ Poll the endpoint state until it reaches a terminal state; raise AirflowException with the failure reason. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerEndpointSensor` :param endpoint_name: Name of the endpoint instance to watch. """
[docs] template_fields: Sequence[str] = ("endpoint_name",)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, endpoint_name, **kwargs): super().__init__(**kwargs) self.endpoint_name = endpoint_name
[docs] def non_terminal_states(self): return SageMakerHook.endpoint_non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): self.log.info("Poking Sagemaker Endpoint %s", self.endpoint_name) return self.hook.describe_endpoint(self.endpoint_name)
[docs] def get_failed_reason_from_response(self, response): return response["FailureReason"]
[docs] def state_from_response(self, response): return response["EndpointStatus"]
[docs]class SageMakerTransformSensor(SageMakerBaseSensor): """ Poll the transform job until it reaches a terminal state; raise AirflowException with the failure reason. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerTransformSensor` :param job_name: Name of the transform job to watch. """
[docs] template_fields: Sequence[str] = ("job_name",)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_name: str, **kwargs): super().__init__(**kwargs) self.job_name = job_name
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): self.log.info("Poking Sagemaker Transform Job %s", self.job_name) return self.hook.describe_transform_job(self.job_name)
[docs] def get_failed_reason_from_response(self, response): return response["FailureReason"]
[docs] def state_from_response(self, response): return response["TransformJobStatus"]
[docs]class SageMakerTuningSensor(SageMakerBaseSensor): """ Poll the tuning state until it reaches a terminal state; raise AirflowException with the failure reason. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerTuningSensor` :param job_name: Name of the tuning instance to watch. """
[docs] template_fields: Sequence[str] = ("job_name",)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_name: str, **kwargs): super().__init__(**kwargs) self.job_name = job_name
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): self.log.info("Poking Sagemaker Tuning Job %s", self.job_name) return self.hook.describe_tuning_job(self.job_name)
[docs] def get_failed_reason_from_response(self, response): return response["FailureReason"]
[docs] def state_from_response(self, response): return response["HyperParameterTuningJobStatus"]
[docs]class SageMakerTrainingSensor(SageMakerBaseSensor): """ Poll the training job until it reaches a terminal state; raise AirflowException with the failure reason. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerTrainingSensor` :param job_name: Name of the training job to watch. :param print_log: Prints the cloudwatch log if True; Defaults to True. """
[docs] template_fields: Sequence[str] = ("job_name",)
[docs] template_ext: Sequence[str] = ()
def __init__(self, *, job_name, print_log=True, **kwargs): super().__init__(**kwargs) self.job_name = job_name self.print_log = print_log self.positions = {} self.stream_names = [] self.instance_count: int | None = None self.state: int | None = None self.last_description = None self.last_describe_job_call = None self.log_resource_inited = False
[docs] def init_log_resource(self, hook: SageMakerHook) -> None: """Set tailing LogState for associated training job.""" description = hook.describe_training_job(self.job_name) self.instance_count = description["ResourceConfig"]["InstanceCount"] status = description["TrainingJobStatus"] job_already_completed = status not in self.non_terminal_states() self.state = LogState.COMPLETE if job_already_completed else LogState.TAILING self.last_description = description self.last_describe_job_call = time.monotonic() self.log_resource_inited = True
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.training_failed_states
[docs] def get_sagemaker_response(self): if self.print_log: if not self.log_resource_inited: self.init_log_resource(self.hook) ( self.state, self.last_description, self.last_describe_job_call, ) = self.hook.describe_training_job_with_log( self.job_name, self.positions, self.stream_names, self.instance_count, self.state, self.last_description, self.last_describe_job_call, ) else: self.last_description = self.hook.describe_training_job(self.job_name) status = self.state_from_response(self.last_description) if (status not in self.non_terminal_states()) and (status not in self.failed_states()): billable_time = ( self.last_description["TrainingEndTime"] - self.last_description["TrainingStartTime"] ) * self.last_description["ResourceConfig"]["InstanceCount"] self.log.info("Billable seconds: %s", (int(billable_time.total_seconds()) + 1)) return self.last_description
[docs] def get_failed_reason_from_response(self, response): return response["FailureReason"]
[docs] def state_from_response(self, response): return response["TrainingJobStatus"]
[docs]class SageMakerPipelineSensor(SageMakerBaseSensor): """ Poll the pipeline until it reaches a terminal state; raise AirflowException with the failure reason. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerPipelineSensor` :param pipeline_exec_arn: ARN of the pipeline to watch. :param verbose: Whether to print steps details while waiting for completion. Defaults to true, consider turning off for pipelines that have thousands of steps. """
[docs] template_fields: Sequence[str] = ("pipeline_exec_arn",)
def __init__(self, *, pipeline_exec_arn: str, verbose: bool = True, **kwargs): super().__init__(resource_type="pipeline", **kwargs) self.pipeline_exec_arn = pipeline_exec_arn self.verbose = verbose
[docs] def non_terminal_states(self) -> set[str]: return SageMakerHook.pipeline_non_terminal_states
[docs] def failed_states(self) -> set[str]: return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self) -> dict: self.log.info("Poking Sagemaker Pipeline Execution %s", self.pipeline_exec_arn) return self.hook.describe_pipeline_exec(self.pipeline_exec_arn, self.verbose)
[docs] def state_from_response(self, response: dict) -> str: return response["PipelineExecutionStatus"]
[docs]class SageMakerAutoMLSensor(SageMakerBaseSensor): """ Poll the auto ML job until it reaches a terminal state; raise AirflowException with the failure reason. .. seealso:: For more information on how to use this sensor, take a look at the guide: :ref:`howto/sensor:SageMakerAutoMLSensor` :param job_name: unique name of the AutoML job to watch. """
[docs] template_fields: Sequence[str] = ("job_name",)
def __init__(self, *, job_name: str, **kwargs): super().__init__(resource_type="autoML job", **kwargs) self.job_name = job_name
[docs] def non_terminal_states(self) -> set[str]: return SageMakerHook.non_terminal_states
[docs] def failed_states(self) -> set[str]: return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self) -> dict: self.log.info("Poking Sagemaker AutoML Execution %s", self.job_name) return self.hook._describe_auto_ml_job(self.job_name)
[docs] def state_from_response(self, response: dict) -> str: return response["AutoMLJobStatus"]

Was this entry helpful?