Source code for airflow.providers.amazon.aws.operators.kinesis_analytics

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from typing import TYPE_CHECKING, Any, Sequence

from botocore.exceptions import ClientError

from airflow.configuration import conf
from airflow.exceptions import AirflowException
from airflow.providers.amazon.aws.hooks.kinesis_analytics import KinesisAnalyticsV2Hook
from airflow.providers.amazon.aws.operators.base_aws import AwsBaseOperator
from airflow.providers.amazon.aws.triggers.kinesis_analytics import (
    KinesisAnalyticsV2ApplicationOperationCompleteTrigger,
)
from airflow.providers.amazon.aws.utils import validate_execute_complete_event
from airflow.providers.amazon.aws.utils.mixins import aws_template_fields

if TYPE_CHECKING:
    from airflow.utils.context import Context


[docs]class KinesisAnalyticsV2CreateApplicationOperator(AwsBaseOperator[KinesisAnalyticsV2Hook]): """ Creates an AWS Managed Service for Apache Flink application. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:KinesisAnalyticsV2CreateApplicationOperator` :param application_name: The name of application. (templated) :param runtime_environment: The runtime environment for the application. (templated) :param service_execution_role: The IAM role used by the application to access services. (templated) :param create_application_kwargs: Create application extra properties. (templated) :param application_description: A summary description of the application. (templated) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] aws_hook_class = KinesisAnalyticsV2Hook
[docs] ui_color = "#44b5e2"
[docs] template_fields: Sequence[str] = aws_template_fields( "application_name", "runtime_environment", "service_execution_role", "create_application_kwargs", "application_description", )
[docs] template_fields_renderers: dict = { "create_application_kwargs": "json", }
def __init__( self, application_name: str, runtime_environment: str, service_execution_role: str, create_application_kwargs: dict[str, Any] | None = None, application_description: str = "Managed Service for Apache Flink application created from Airflow", **kwargs, ): super().__init__(**kwargs) self.application_name = application_name self.runtime_environment = runtime_environment self.service_execution_role = service_execution_role self.create_application_kwargs = create_application_kwargs or {} self.application_description = application_description
[docs] def execute(self, context: Context) -> dict[str, str]: self.log.info("Creating AWS Managed Service for Apache Flink application %s.", self.application_name) try: response = self.hook.conn.create_application( ApplicationName=self.application_name, ApplicationDescription=self.application_description, RuntimeEnvironment=self.runtime_environment, ServiceExecutionRole=self.service_execution_role, **self.create_application_kwargs, ) except ClientError as error: raise AirflowException( f"AWS Managed Service for Apache Flink application creation failed: {error.response['Error']['Message']}" ) self.log.info( "AWS Managed Service for Apache Flink application created successfully %s.", self.application_name, ) return {"ApplicationARN": response["ApplicationDetail"]["ApplicationARN"]}
[docs]class KinesisAnalyticsV2StartApplicationOperator(AwsBaseOperator[KinesisAnalyticsV2Hook]): """ Starts an AWS Managed Service for Apache Flink application. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:KinesisAnalyticsV2StartApplicationOperator` :param application_name: The name of application. (templated) :param run_configuration: Application properties to start Apache Flink Job. (templated) :param wait_for_completion: Whether to wait for job to stop. (default: True) :param waiter_delay: Time in seconds to wait between status checks. (default: 60) :param waiter_max_attempts: Maximum number of attempts to check for job completion. (default: 20) :param deferrable: If True, the operator will wait asynchronously for the job to stop. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] aws_hook_class = KinesisAnalyticsV2Hook
[docs] ui_color = "#44b5e2"
[docs] template_fields: Sequence[str] = aws_template_fields( "application_name", "run_configuration", )
[docs] template_fields_renderers: dict = { "run_configuration": "json", }
def __init__( self, application_name: str, run_configuration: dict[str, Any] | None = None, wait_for_completion: bool = True, waiter_delay: int = 60, waiter_max_attempts: int = 20, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(**kwargs) self.application_name = application_name self.run_configuration = run_configuration or {} self.wait_for_completion = wait_for_completion self.waiter_delay = waiter_delay self.waiter_max_attempts = waiter_max_attempts self.deferrable = deferrable
[docs] def execute(self, context: Context) -> dict[str, Any]: msg = "AWS Managed Service for Apache Flink application" try: self.log.info("Starting %s %s.", msg, self.application_name) self.hook.conn.start_application( ApplicationName=self.application_name, RunConfiguration=self.run_configuration ) except ClientError as error: raise AirflowException( f"Failed to start {msg} {self.application_name}: {error.response['Error']['Message']}" ) describe_response = self.hook.conn.describe_application(ApplicationName=self.application_name) if self.deferrable: self.log.info("Deferring for %s to start: %s.", msg, self.application_name) self.defer( trigger=KinesisAnalyticsV2ApplicationOperationCompleteTrigger( application_name=self.application_name, waiter_name="application_start_complete", aws_conn_id=self.aws_conn_id, waiter_delay=self.waiter_delay, waiter_max_attempts=self.waiter_max_attempts, region_name=self.region_name, verify=self.verify, botocore_config=self.botocore_config, ), method_name="execute_complete", ) if self.wait_for_completion: self.log.info("Waiting for %s to start: %s.", msg, self.application_name) self.hook.get_waiter("application_start_complete").wait( ApplicationName=self.application_name, WaiterConfig={"Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts}, ) self.log.info("%s started successfully %s.", msg, self.application_name) return {"ApplicationARN": describe_response["ApplicationDetail"]["ApplicationARN"]}
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> dict[str, Any]: event = validate_execute_complete_event(event) if event["status"] != "success": raise AirflowException( "Error while starting AWS Managed Service for Apache Flink application: %s", event ) response = self.hook.conn.describe_application( ApplicationName=event["application_name"], ) self.log.info( "AWS Managed Service for Apache Flink application %s started successfully.", event["application_name"], ) return {"ApplicationARN": response["ApplicationDetail"]["ApplicationARN"]}
[docs]class KinesisAnalyticsV2StopApplicationOperator(AwsBaseOperator[KinesisAnalyticsV2Hook]): """ Stop an AWS Managed Service for Apache Flink application. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:KinesisAnalyticsV2StopApplicationOperator` :param application_name: The name of your application. (templated) :param force: Set to true to force the application to stop. If you set Force to true, Managed Service for Apache Flink stops the application without taking a snapshot. (templated) :param wait_for_completion: Whether to wait for job to stop. (default: True) :param waiter_delay: Time in seconds to wait between status checks. (default: 60) :param waiter_max_attempts: Maximum number of attempts to check for job completion. (default: 20) :param deferrable: If True, the operator will wait asynchronously for the job to stop. This implies waiting for completion. This mode requires aiobotocore module to be installed. (default: False) :param aws_conn_id: The Airflow connection used for AWS credentials. If this is ``None`` or empty then the default boto3 behaviour is used. If running Airflow in a distributed manner and aws_conn_id is None or empty, then default boto3 configuration would be used (and must be maintained on each worker node). :param region_name: AWS region_name. If not specified then the default boto3 behaviour is used. :param verify: Whether to verify SSL certificates. See: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/core/session.html :param botocore_config: Configuration dictionary (key-values) for botocore client. See: https://botocore.amazonaws.com/v1/documentation/api/latest/reference/config.html """
[docs] aws_hook_class = KinesisAnalyticsV2Hook
[docs] ui_color = "#44b5e2"
[docs] template_fields: Sequence[str] = aws_template_fields( "application_name", "force", )
def __init__( self, application_name: str, force: bool = False, wait_for_completion: bool = True, waiter_delay: int = 60, waiter_max_attempts: int = 20, deferrable: bool = conf.getboolean("operators", "default_deferrable", fallback=False), **kwargs, ): super().__init__(**kwargs) self.application_name = application_name self.force = force self.wait_for_completion = wait_for_completion self.waiter_delay = waiter_delay self.waiter_max_attempts = waiter_max_attempts self.deferrable = deferrable
[docs] def execute(self, context: Context) -> dict[str, Any]: msg = "AWS Managed Service for Apache Flink application" try: self.log.info("Stopping %s %s.", msg, self.application_name) self.hook.conn.stop_application(ApplicationName=self.application_name, Force=self.force) except ClientError as error: raise AirflowException( f"Failed to stop {msg} {self.application_name}: {error.response['Error']['Message']}" ) describe_response = self.hook.conn.describe_application(ApplicationName=self.application_name) if self.deferrable: self.log.info("Deferring for %s to stop: %s.", msg, self.application_name) self.defer( trigger=KinesisAnalyticsV2ApplicationOperationCompleteTrigger( application_name=self.application_name, waiter_name="application_stop_complete", aws_conn_id=self.aws_conn_id, waiter_delay=self.waiter_delay, waiter_max_attempts=self.waiter_max_attempts, region_name=self.region_name, verify=self.verify, botocore_config=self.botocore_config, ), method_name="execute_complete", ) if self.wait_for_completion: self.log.info("Waiting for %s to stop: %s.", msg, self.application_name) self.hook.get_waiter("application_stop_complete").wait( ApplicationName=self.application_name, WaiterConfig={"Delay": self.waiter_delay, "MaxAttempts": self.waiter_max_attempts}, ) self.log.info("%s stopped successfully %s.", msg, self.application_name) return {"ApplicationARN": describe_response["ApplicationDetail"]["ApplicationARN"]}
[docs] def execute_complete(self, context: Context, event: dict[str, Any] | None = None) -> dict[str, Any]: event = validate_execute_complete_event(event) if event["status"] != "success": raise AirflowException("Error while stopping AWS Managed Service for Apache Flink application") response = self.hook.conn.describe_application( ApplicationName=event["application_name"], ) self.log.info( "AWS Managed Service for Apache Flink application %s stopped successfully.", event["application_name"], ) return {"ApplicationARN": response["ApplicationDetail"]["ApplicationARN"]}

Was this entry helpful?