# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from collections.abc import Sequence
from typing import TYPE_CHECKING, cast
from mypy_boto3_appflow.type_defs import (
DestinationFlowConfigTypeDef,
SourceFlowConfigTypeDef,
TaskTypeDef,
TriggerConfigTypeDef,
)
from airflow.providers.amazon.aws.hooks.base_aws import AwsGenericHook
from airflow.providers.amazon.aws.utils.waiter_with_logging import wait
if TYPE_CHECKING:
from mypy_boto3_appflow.client import AppflowClient # noqa: F401
[docs]class AppflowHook(AwsGenericHook["AppflowClient"]):
"""
Interact with Amazon AppFlow.
Provide thin wrapper around :external+boto3:py:class:`boto3.client("appflow") <Appflow.Client>`.
Additional arguments (such as ``aws_conn_id``) may be specified and
are passed down to the underlying AwsBaseHook.
.. seealso::
- :class:`airflow.providers.amazon.aws.hooks.base_aws.AwsBaseHook`
- `Amazon Appflow API Reference <https://docs.aws.amazon.com/appflow/1.0/APIReference/Welcome.html>`__
"""
def __init__(self, *args, **kwargs) -> None:
kwargs["client_type"] = "appflow"
super().__init__(*args, **kwargs)
[docs] def run_flow(
self,
flow_name: str,
poll_interval: int = 20,
wait_for_completion: bool = True,
max_attempts: int = 60,
) -> str:
"""
Execute an AppFlow run.
:param flow_name: The flow name
:param poll_interval: Time (seconds) to wait between two consecutive calls to check the run status
:param wait_for_completion: whether to wait for the run to end to return
:param max_attempts: the number of polls to do before timing out/returning a failure.
:return: The run execution ID
"""
response_start = self.conn.start_flow(flowName=flow_name)
execution_id = response_start["executionId"]
self.log.info("executionId: %s", execution_id)
if wait_for_completion:
wait(
waiter=self.get_waiter("run_complete", {"EXECUTION_ID": execution_id}),
waiter_delay=poll_interval,
waiter_max_attempts=max_attempts,
args={"flowName": flow_name},
failure_message="error while waiting for flow to complete",
status_message="waiting for flow completion, status",
status_args=[
f"flowExecutions[?executionId=='{execution_id}'].executionStatus",
f"flowExecutions[?executionId=='{execution_id}'].executionResult.errorInfo",
],
)
self._log_execution_description(flow_name, execution_id)
return execution_id
def _log_execution_description(self, flow_name: str, execution_id: str):
response_desc = self.conn.describe_flow_execution_records(flowName=flow_name)
last_execs = {fe["executionId"]: fe for fe in response_desc["flowExecutions"]}
exec_details = last_execs[execution_id]
self.log.info("Run complete, execution details: %s", exec_details)
[docs] def update_flow_filter(self, flow_name: str, filter_tasks, set_trigger_ondemand: bool = False) -> None:
"""
Update the flow task filter; all filters will be removed if an empty array is passed to filter_tasks.
:param flow_name: The flow name
:param filter_tasks: List flow tasks to be added
:param set_trigger_ondemand: If True, set the trigger to on-demand; otherwise, keep the trigger as is
:return: None
"""
response = self.conn.describe_flow(flowName=flow_name)
connector_type = response["sourceFlowConfig"]["connectorType"]
tasks = []
# cleanup old filter tasks
for task in response["tasks"]:
if (
task["taskType"] == "Filter"
and task.get("connectorOperator", {}).get(connector_type) != "PROJECTION"
):
self.log.info("Removing task: %s", task)
else:
tasks.append(task) # List of non-filter tasks
tasks += filter_tasks # Add the new filter tasks
if set_trigger_ondemand:
# Clean up attribute to force on-demand trigger
del response["triggerConfig"]["triggerProperties"]
self.conn.update_flow(
flowName=response["flowName"],
destinationFlowConfigList=cast(
Sequence[DestinationFlowConfigTypeDef], response["destinationFlowConfigList"]
),
sourceFlowConfig=cast(SourceFlowConfigTypeDef, response["sourceFlowConfig"]),
triggerConfig=cast(TriggerConfigTypeDef, response["triggerConfig"]),
description=response.get("description", "Flow description."),
tasks=cast(Sequence[TaskTypeDef], tasks),
)