Source code for airflow.example_dags.example_local_kubernetes_executor
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
This is an example dag for using a Local Kubernetes Executor Configuration.
"""
import logging
from datetime import datetime
from airflow import DAG
from airflow.configuration import conf
from airflow.decorators import task
from airflow.example_dags.libs.helper import print_stuff
[docs]log = logging.getLogger(__name__)
[docs]worker_container_repository = conf.get('kubernetes', 'worker_container_repository')
[docs]worker_container_tag = conf.get('kubernetes', 'worker_container_tag')
try:
from kubernetes.client import models as k8s
except ImportError:
log.warning("Could not import DAGs in example_local_kubernetes_executor.py", exc_info=True)
log.warning("Install Kubernetes dependencies with: pip install apache-airflow[cncf.kubernetes]")
if k8s:
with DAG(
dag_id='example_local_kubernetes_executor',
schedule_interval=None,
start_date=datetime(2021, 1, 1),
catchup=False,
tags=['example3'],
) as dag:
# You can use annotations on your kubernetes pods!
[docs] start_task_executor_config = {
"pod_override": k8s.V1Pod(metadata=k8s.V1ObjectMeta(annotations={"test": "annotation"}))
}
@task(
executor_config=start_task_executor_config,
queue='kubernetes',
task_id='task_with_kubernetes_executor',
)
def task_with_template():
print_stuff()
@task(task_id='task_with_local_executor')
def task_with_local(ds=None, **kwargs):
"""Print the Airflow context and ds variable from the context."""
print(kwargs)
print(ds)
return 'Whatever you return gets printed in the logs'
task_with_local() >> task_with_template()