Source code for airflow.models.dagbag

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import hashlib
import importlib
import importlib.machinery
import importlib.util
import os
import sys
import textwrap
import traceback
import warnings
import zipfile
from datetime import datetime, timedelta
from typing import TYPE_CHECKING, Dict, List, NamedTuple, Optional, Union

from croniter import CroniterBadCronError, CroniterBadDateError, CroniterNotAlphaError, croniter
from sqlalchemy.exc import OperationalError
from sqlalchemy.orm import Session
from tabulate import tabulate

from airflow import settings
from airflow.configuration import conf
from airflow.exceptions import AirflowClusterPolicyViolation, AirflowDagCycleException, SerializedDagNotFound
from airflow.settings import run_with_db_retries
from airflow.stats import Stats
from airflow.utils import timezone
from airflow.utils.dag_cycle_tester import test_cycle
from airflow.utils.file import correct_maybe_zipped, list_py_file_paths, might_contain_dag
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.utils.session import provide_session
from airflow.utils.timeout import timeout

if TYPE_CHECKING:
    import pathlib


[docs]class FileLoadStat(NamedTuple): """Information about single file"""
[docs] file: str
[docs] duration: timedelta
[docs] dag_num: int
[docs] task_num: int
[docs] dags: str
[docs]class DagBag(LoggingMixin): """ A dagbag is a collection of dags, parsed out of a folder tree and has high level configuration settings, like what database to use as a backend and what executor to use to fire off tasks. This makes it easier to run distinct environments for say production and development, tests, or for different teams or security profiles. What would have been system level settings are now dagbag level so that one system can run multiple, independent settings sets. :param dag_folder: the folder to scan to find DAGs :type dag_folder: unicode :param include_examples: whether to include the examples that ship with airflow or not :type include_examples: bool :param include_smart_sensor: whether to include the smart sensor native DAGs that create the smart sensor operators for whole cluster :type include_smart_sensor: bool :param read_dags_from_db: Read DAGs from DB if ``True`` is passed. If ``False`` DAGs are read from python files. :type read_dags_from_db: bool :param load_op_links: Should the extra operator link be loaded via plugins when de-serializing the DAG? This flag is set to False in Scheduler so that Extra Operator links are not loaded to not run User code in Scheduler. :type load_op_links: bool """
[docs] DAGBAG_IMPORT_TIMEOUT = conf.getfloat('core', 'DAGBAG_IMPORT_TIMEOUT')
[docs] SCHEDULER_ZOMBIE_TASK_THRESHOLD = conf.getint('scheduler', 'scheduler_zombie_task_threshold')
def __init__( self, dag_folder: Union[str, "pathlib.Path", None] = None, include_examples: bool = conf.getboolean('core', 'LOAD_EXAMPLES'), include_smart_sensor: bool = conf.getboolean('smart_sensor', 'USE_SMART_SENSOR'), safe_mode: bool = conf.getboolean('core', 'DAG_DISCOVERY_SAFE_MODE'), read_dags_from_db: bool = False, store_serialized_dags: Optional[bool] = None, load_op_links: bool = True, ): # Avoid circular import from airflow.models.dag import DAG super().__init__() if store_serialized_dags: warnings.warn( "The store_serialized_dags parameter has been deprecated. " "You should pass the read_dags_from_db parameter.", DeprecationWarning, stacklevel=2, ) read_dags_from_db = store_serialized_dags dag_folder = dag_folder or settings.DAGS_FOLDER self.dag_folder = dag_folder self.dags: Dict[str, DAG] = {} # the file's last modified timestamp when we last read it self.file_last_changed: Dict[str, datetime] = {} self.import_errors: Dict[str, str] = {} self.has_logged = False self.read_dags_from_db = read_dags_from_db # Only used by read_dags_from_db=True self.dags_last_fetched: Dict[str, datetime] = {} # Only used by SchedulerJob to compare the dag_hash to identify change in DAGs self.dags_hash: Dict[str, str] = {} self.dagbag_import_error_tracebacks = conf.getboolean('core', 'dagbag_import_error_tracebacks') self.dagbag_import_error_traceback_depth = conf.getint('core', 'dagbag_import_error_traceback_depth') self.collect_dags( dag_folder=dag_folder, include_examples=include_examples, include_smart_sensor=include_smart_sensor, safe_mode=safe_mode, ) # Should the extra operator link be loaded via plugins? # This flag is set to False in Scheduler so that Extra Operator links are not loaded self.load_op_links = load_op_links
[docs] def size(self) -> int: """:return: the amount of dags contained in this dagbag""" return len(self.dags)
@property
[docs] def store_serialized_dags(self) -> bool: """Whether or not to read dags from DB""" warnings.warn( "The store_serialized_dags property has been deprecated. Use read_dags_from_db instead.", DeprecationWarning, stacklevel=2, ) return self.read_dags_from_db
@property
[docs] def dag_ids(self) -> List[str]: """ :return: a list of DAG IDs in this bag :rtype: List[unicode] """ return list(self.dags.keys())
@provide_session
[docs] def get_dag(self, dag_id, session: Session = None): """ Gets the DAG out of the dictionary, and refreshes it if expired :param dag_id: DAG Id :type dag_id: str """ # Avoid circular import from airflow.models.dag import DagModel if self.read_dags_from_db: # Import here so that serialized dag is only imported when serialization is enabled from airflow.models.serialized_dag import SerializedDagModel if dag_id not in self.dags: # Load from DB if not (yet) in the bag self._add_dag_from_db(dag_id=dag_id, session=session) return self.dags.get(dag_id) # If DAG is in the DagBag, check the following # 1. if time has come to check if DAG is updated (controlled by min_serialized_dag_fetch_secs) # 2. check the last_updated column in SerializedDag table to see if Serialized DAG is updated # 3. if (2) is yes, fetch the Serialized DAG. min_serialized_dag_fetch_secs = timedelta(seconds=settings.MIN_SERIALIZED_DAG_FETCH_INTERVAL) if ( dag_id in self.dags_last_fetched and timezone.utcnow() > self.dags_last_fetched[dag_id] + min_serialized_dag_fetch_secs ): sd_last_updated_datetime = SerializedDagModel.get_last_updated_datetime( dag_id=dag_id, session=session, ) if sd_last_updated_datetime and sd_last_updated_datetime > self.dags_last_fetched[dag_id]: self._add_dag_from_db(dag_id=dag_id, session=session) return self.dags.get(dag_id) # If asking for a known subdag, we want to refresh the parent dag = None root_dag_id = dag_id if dag_id in self.dags: dag = self.dags[dag_id] if dag.is_subdag: root_dag_id = dag.parent_dag.dag_id # type: ignore # If DAG Model is absent, we can't check last_expired property. Is the DAG not yet synchronized? orm_dag = DagModel.get_current(root_dag_id, session=session) if not orm_dag: return self.dags.get(dag_id) # If the dag corresponding to root_dag_id is absent or expired is_missing = root_dag_id not in self.dags is_expired = orm_dag.last_expired and dag and dag.last_loaded < orm_dag.last_expired if is_missing or is_expired: # Reprocess source file found_dags = self.process_file( filepath=correct_maybe_zipped(orm_dag.fileloc), only_if_updated=False ) # If the source file no longer exports `dag_id`, delete it from self.dags if found_dags and dag_id in [found_dag.dag_id for found_dag in found_dags]: return self.dags[dag_id] elif dag_id in self.dags: del self.dags[dag_id] return self.dags.get(dag_id)
[docs] def _add_dag_from_db(self, dag_id: str, session: Session): """Add DAG to DagBag from DB""" from airflow.models.serialized_dag import SerializedDagModel row = SerializedDagModel.get(dag_id, session) if not row: raise SerializedDagNotFound(f"DAG '{dag_id}' not found in serialized_dag table") row.load_op_links = self.load_op_links dag = row.dag for subdag in dag.subdags: self.dags[subdag.dag_id] = subdag self.dags[dag.dag_id] = dag self.dags_last_fetched[dag.dag_id] = timezone.utcnow() self.dags_hash[dag.dag_id] = row.dag_hash
[docs] def process_file(self, filepath, only_if_updated=True, safe_mode=True): """ Given a path to a python module or zip file, this method imports the module and look for dag objects within it. """ # if the source file no longer exists in the DB or in the filesystem, # return an empty list # todo: raise exception? if filepath is None or not os.path.isfile(filepath): return [] try: # This failed before in what may have been a git sync # race condition file_last_changed_on_disk = datetime.fromtimestamp(os.path.getmtime(filepath)) if ( only_if_updated and filepath in self.file_last_changed and file_last_changed_on_disk == self.file_last_changed[filepath] ): return [] except Exception as e: # pylint: disable=broad-except self.log.exception(e) return [] if not zipfile.is_zipfile(filepath): mods = self._load_modules_from_file(filepath, safe_mode) else: mods = self._load_modules_from_zip(filepath, safe_mode) found_dags = self._process_modules(filepath, mods, file_last_changed_on_disk) self.file_last_changed[filepath] = file_last_changed_on_disk return found_dags
[docs] def _load_modules_from_file(self, filepath, safe_mode): if not might_contain_dag(filepath, safe_mode): # Don't want to spam user with skip messages if not self.has_logged: self.has_logged = True self.log.info("File %s assumed to contain no DAGs. Skipping.", filepath) return [] self.log.debug("Importing %s", filepath) org_mod_name, _ = os.path.splitext(os.path.split(filepath)[-1]) path_hash = hashlib.sha1(filepath.encode('utf-8')).hexdigest() mod_name = f'unusual_prefix_{path_hash}_{org_mod_name}' if mod_name in sys.modules: del sys.modules[mod_name] timeout_msg = f"DagBag import timeout for {filepath} after {self.DAGBAG_IMPORT_TIMEOUT}s" with timeout(self.DAGBAG_IMPORT_TIMEOUT, error_message=timeout_msg): try: loader = importlib.machinery.SourceFileLoader(mod_name, filepath) spec = importlib.util.spec_from_loader(mod_name, loader) new_module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = new_module loader.exec_module(new_module) return [new_module] except Exception as e: # pylint: disable=broad-except self.log.exception("Failed to import: %s", filepath) if self.dagbag_import_error_tracebacks: self.import_errors[filepath] = traceback.format_exc( limit=-self.dagbag_import_error_traceback_depth ) else: self.import_errors[filepath] = str(e) return []
[docs] def _load_modules_from_zip(self, filepath, safe_mode): mods = [] current_zip_file = zipfile.ZipFile(filepath) for zip_info in current_zip_file.infolist(): head, _ = os.path.split(zip_info.filename) mod_name, ext = os.path.splitext(zip_info.filename) if ext not in [".py", ".pyc"]: continue if head: continue if mod_name == '__init__': self.log.warning("Found __init__.%s at root of %s", ext, filepath) self.log.debug("Reading %s from %s", zip_info.filename, filepath) if not might_contain_dag(zip_info.filename, safe_mode, current_zip_file): # todo: create ignore list # Don't want to spam user with skip messages if not self.has_logged: self.has_logged = True self.log.info( "File %s:%s assumed to contain no DAGs. Skipping.", filepath, zip_info.filename ) continue if mod_name in sys.modules: del sys.modules[mod_name] try: sys.path.insert(0, filepath) current_module = importlib.import_module(mod_name) mods.append(current_module) except Exception as e: # pylint: disable=broad-except self.log.exception("Failed to import: %s", filepath) if self.dagbag_import_error_tracebacks: self.import_errors[filepath] = traceback.format_exc( limit=-self.dagbag_import_error_traceback_depth ) else: self.import_errors[filepath] = str(e) return mods
[docs] def _process_modules(self, filepath, mods, file_last_changed_on_disk): from airflow.models.dag import DAG # Avoid circular import is_zipfile = zipfile.is_zipfile(filepath) top_level_dags = [o for m in mods for o in list(m.__dict__.values()) if isinstance(o, DAG)] found_dags = [] for dag in top_level_dags: if not dag.full_filepath: dag.full_filepath = filepath if dag.fileloc != filepath and not is_zipfile: dag.fileloc = filepath try: dag.is_subdag = False if isinstance(dag.normalized_schedule_interval, str): croniter(dag.normalized_schedule_interval) self.bag_dag(dag=dag, root_dag=dag) found_dags.append(dag) found_dags += dag.subdags except (CroniterBadCronError, CroniterBadDateError, CroniterNotAlphaError) as cron_e: self.log.exception("Failed to bag_dag: %s", dag.full_filepath) self.import_errors[dag.full_filepath] = f"Invalid Cron expression: {cron_e}" self.file_last_changed[dag.full_filepath] = file_last_changed_on_disk except (AirflowDagCycleException, AirflowClusterPolicyViolation) as exception: self.log.exception("Failed to bag_dag: %s", dag.full_filepath) self.import_errors[dag.full_filepath] = str(exception) self.file_last_changed[dag.full_filepath] = file_last_changed_on_disk return found_dags
[docs] def bag_dag(self, dag, root_dag): """ Adds the DAG into the bag, recurses into sub dags. Throws AirflowDagCycleException if a cycle is detected in this dag or its subdags """ test_cycle(dag) # throws if a task cycle is found dag.resolve_template_files() dag.last_loaded = timezone.utcnow() # Check policies settings.dag_policy(dag) for task in dag.tasks: settings.task_policy(task) subdags = dag.subdags try: for subdag in subdags: subdag.full_filepath = dag.full_filepath subdag.parent_dag = dag subdag.is_subdag = True self.bag_dag(dag=subdag, root_dag=root_dag) self.dags[dag.dag_id] = dag self.log.debug('Loaded DAG %s', dag) except AirflowDagCycleException as cycle_exception: # There was an error in bagging the dag. Remove it from the list of dags self.log.exception('Exception bagging dag: %s', dag.dag_id) # Only necessary at the root level since DAG.subdags automatically # performs DFS to search through all subdags if dag == root_dag: for subdag in subdags: if subdag.dag_id in self.dags: del self.dags[subdag.dag_id] raise cycle_exception
[docs] def collect_dags( self, dag_folder: Union[str, "pathlib.Path", None] = None, only_if_updated: bool = True, include_examples: bool = conf.getboolean('core', 'LOAD_EXAMPLES'), include_smart_sensor: bool = conf.getboolean('smart_sensor', 'USE_SMART_SENSOR'), safe_mode: bool = conf.getboolean('core', 'DAG_DISCOVERY_SAFE_MODE'), ): """ Given a file path or a folder, this method looks for python modules, imports them and adds them to the dagbag collection. Note that if a ``.airflowignore`` file is found while processing the directory, it will behave much like a ``.gitignore``, ignoring files that match any of the regex patterns specified in the file. **Note**: The patterns in .airflowignore are treated as un-anchored regexes, not shell-like glob patterns. """ if self.read_dags_from_db: return self.log.info("Filling up the DagBag from %s", dag_folder) dag_folder = dag_folder or self.dag_folder # Used to store stats around DagBag processing stats = [] # Ensure dag_folder is a str -- it may have been a pathlib.Path dag_folder = correct_maybe_zipped(str(dag_folder)) for filepath in list_py_file_paths( dag_folder, safe_mode=safe_mode, include_examples=include_examples, include_smart_sensor=include_smart_sensor, ): try: file_parse_start_dttm = timezone.utcnow() found_dags = self.process_file(filepath, only_if_updated=only_if_updated, safe_mode=safe_mode) file_parse_end_dttm = timezone.utcnow() stats.append( FileLoadStat( file=filepath.replace(settings.DAGS_FOLDER, ''), duration=file_parse_end_dttm - file_parse_start_dttm, dag_num=len(found_dags), task_num=sum([len(dag.tasks) for dag in found_dags]), dags=str([dag.dag_id for dag in found_dags]), ) ) except Exception as e: # pylint: disable=broad-except self.log.exception(e) self.dagbag_stats = sorted(stats, key=lambda x: x.duration, reverse=True)
[docs] def collect_dags_from_db(self): """Collects DAGs from database.""" from airflow.models.serialized_dag import SerializedDagModel with Stats.timer('collect_db_dags'): self.log.info("Filling up the DagBag from database") # The dagbag contains all rows in serialized_dag table. Deleted DAGs are deleted # from the table by the scheduler job. self.dags = SerializedDagModel.read_all_dags() # Adds subdags. # DAG post-processing steps such as self.bag_dag and croniter are not needed as # they are done by scheduler before serialization. subdags = {} for dag in self.dags.values(): for subdag in dag.subdags: subdags[subdag.dag_id] = subdag self.dags.update(subdags)
[docs] def dagbag_report(self): """Prints a report around DagBag loading stats""" stats = self.dagbag_stats dag_folder = self.dag_folder duration = sum([o.duration for o in stats], timedelta()).total_seconds() dag_num = sum([o.dag_num for o in stats]) task_num = sum([o.task_num for o in stats]) table = tabulate(stats, headers="keys") report = textwrap.dedent( f"""\n ------------------------------------------------------------------- DagBag loading stats for {dag_folder} ------------------------------------------------------------------- Number of DAGs: {dag_num} Total task number: {task_num} DagBag parsing time: {duration} {table} """ ) return report
@provide_session
[docs] def sync_to_db(self, session: Optional[Session] = None): """Save attributes about list of DAG to the DB.""" # To avoid circular import - airflow.models.dagbag -> airflow.models.dag -> airflow.models.dagbag from airflow.models.dag import DAG from airflow.models.serialized_dag import SerializedDagModel def _serialze_dag_capturing_errors(dag, session): """ Try to serialize the dag to the DB, but make a note of any errors. We can't place them directly in import_errors, as this may be retried, and work the next time """ if dag.is_subdag: return [] try: # We cant use bulk_write_to_db as we want to capture each error individually SerializedDagModel.write_dag( dag, min_update_interval=settings.MIN_SERIALIZED_DAG_UPDATE_INTERVAL, session=session, ) return [] except OperationalError: raise except Exception: # pylint: disable=broad-except return [(dag.fileloc, traceback.format_exc(limit=-self.dagbag_import_error_traceback_depth))] # Retry 'DAG.bulk_write_to_db' & 'SerializedDagModel.bulk_sync_to_db' in case # of any Operational Errors # In case of failures, provide_session handles rollback for attempt in run_with_db_retries(logger=self.log): with attempt: serialize_errors = [] self.log.debug( "Running dagbag.sync_to_db with retries. Try %d of %d", attempt.retry_state.attempt_number, settings.MAX_DB_RETRIES, ) self.log.debug("Calling the DAG.bulk_sync_to_db method") try: # Write Serialized DAGs to DB, capturing errors for dag in self.dags.values(): serialize_errors.extend(_serialze_dag_capturing_errors(dag, session)) DAG.bulk_write_to_db(self.dags.values(), session=session) except OperationalError: session.rollback() raise # Only now we are "complete" do we update import_errors - don't want to record errors from # previous failed attempts self.import_errors.update(dict(serialize_errors))

Was this entry helpful?