Google Dataplex Operators¶
Dataplex is an intelligent data fabric that provides unified analytics and data management across your data lakes, data warehouses, and data marts.
For more information about the task visit Dataplex production documentation <Product documentation
Create a Task¶
Before you create a dataplex task you need to define its body. For more information about the available fields to pass when creating a task, visit Dataplex create task API.
A simple task configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex.py
EXAMPLE_TASK_BODY = {
"trigger_spec": {"type_": TRIGGER_SPEC_TYPE},
"execution_spec": {"service_account": SERVICE_ACC},
"spark": {"python_script_file": SPARK_FILE_FULL_PATH},
}
With this configuration we can create the task both synchronously & asynchronously:
DataplexCreateTaskOperator
google/tests/system/google/cloud/dataplex/example_dataplex.py
create_dataplex_task = DataplexCreateTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
body=EXAMPLE_TASK_BODY,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="create_dataplex_task",
)
google/tests/system/google/cloud/dataplex/example_dataplex.py
create_dataplex_task_async = DataplexCreateTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
body=EXAMPLE_TASK_BODY,
dataplex_task_id=f"{DATAPLEX_TASK_ID}-1",
asynchronous=True,
task_id="create_dataplex_task_async",
)
Delete a task¶
To delete a task you can use:
google/tests/system/google/cloud/dataplex/example_dataplex.py
delete_dataplex_task_async = DataplexDeleteTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=f"{DATAPLEX_TASK_ID}-1",
task_id="delete_dataplex_task_async",
)
List tasks¶
To list tasks you can use:
google/tests/system/google/cloud/dataplex/example_dataplex.py
list_dataplex_task = DataplexListTasksOperator(
project_id=PROJECT_ID, region=REGION, lake_id=LAKE_ID, task_id="list_dataplex_task"
)
Get a task¶
To get a task you can use:
google/tests/system/google/cloud/dataplex/example_dataplex.py
get_dataplex_task = DataplexGetTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="get_dataplex_task",
)
Wait for a task¶
To wait for a task created asynchronously you can use:
google/tests/system/google/cloud/dataplex/example_dataplex.py
dataplex_task_state = DataplexTaskStateSensor(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="dataplex_task_state",
)
Create a Lake¶
Before you create a dataplex lake you need to define its body.
For more information about the available fields to pass when creating a lake, visit Dataplex create lake API.
A simple task configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex.py
EXAMPLE_LAKE_BODY = {
"display_name": "test_display_name",
"labels": [],
"description": "test_description",
"metastore": {"service": ""},
}
With this configuration we can create the lake:
google/tests/system/google/cloud/dataplex/example_dataplex.py
create_lake = DataplexCreateLakeOperator(
project_id=PROJECT_ID, region=REGION, body=EXAMPLE_LAKE_BODY, lake_id=LAKE_ID, task_id="create_lake"
)
Delete a lake¶
To delete a lake you can use:
google/tests/system/google/cloud/dataplex/example_dataplex.py
delete_lake = DataplexDeleteLakeOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
task_id="delete_lake",
trigger_rule=TriggerRule.ALL_DONE,
)
Create or update a Data Quality scan¶
Before you create a Dataplex Data Quality scan you need to define its body. For more information about the available fields to pass when creating a Data Quality scan, visit Dataplex create data quality API.
A simple Data Quality scan configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
EXAMPLE_DATA_SCAN = dataplex_v1.DataScan()
EXAMPLE_DATA_SCAN.data.entity = (
f"projects/{PROJECT_ID}/locations/{REGION}/lakes/{LAKE_ID}/zones/{ZONE_ID}/entities/{TABLE_1}"
)
EXAMPLE_DATA_SCAN.data.resource = (
f"//bigquery.googleapis.com/projects/{PROJECT_ID}/datasets/{DATASET}/tables/{TABLE_1}"
)
EXAMPLE_DATA_SCAN.data_quality_spec = DataQualitySpec(
{
"rules": [
{
"range_expectation": {
"min_value": "0",
"max_value": "10000",
},
"column": "value",
"dimension": "VALIDITY",
}
],
}
)
With this configuration we can create or update the Data Quality scan:
DataplexCreateOrUpdateDataQualityScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
create_data_scan = DataplexCreateOrUpdateDataQualityScanOperator(
task_id="create_data_scan",
project_id=PROJECT_ID,
region=REGION,
body=EXAMPLE_DATA_SCAN,
data_scan_id=DATA_SCAN_ID,
)
Get a Data Quality scan¶
To get a Data Quality scan you can use:
DataplexGetDataQualityScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
get_data_scan = DataplexGetDataQualityScanOperator(
task_id="get_data_scan",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
Delete a Data Quality scan¶
To delete a Data Quality scan you can use:
DataplexDeleteDataQualityScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
delete_data_scan = DataplexDeleteDataQualityScanOperator(
task_id="delete_data_scan",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
Run a Data Quality scan¶
You can run Dataplex Data Quality scan in asynchronous modes to later check its status using sensor:
DataplexRunDataQualityScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
run_data_scan_async = DataplexRunDataQualityScanOperator(
task_id="run_data_scan_async",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
asynchronous=True,
)
To check that running Dataplex Data Quality scan succeeded you can use:
DataplexDataQualityJobStatusSensor
.
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
get_data_scan_job_status = DataplexDataQualityJobStatusSensor(
task_id="get_data_scan_job_status",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
job_id="{{ task_instance.xcom_pull('run_data_scan_async') }}",
)
Also for this action you can use operator in the deferrable mode:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
run_data_scan_def = DataplexRunDataQualityScanOperator(
task_id="run_data_scan_def",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
deferrable=True,
)
Get a Data Quality scan job¶
To get a Data Quality scan job you can use:
DataplexGetDataQualityScanResultOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
get_data_scan_job_result_2 = DataplexGetDataQualityScanResultOperator(
task_id="get_data_scan_job_result_2",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
Also for this action you can use operator in the deferrable mode:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
get_data_scan_job_result_def = DataplexGetDataQualityScanResultOperator(
task_id="get_data_scan_job_result_def",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
deferrable=True,
)
Create a zone¶
Before you create a Dataplex zone you need to define its body.
For more information about the available fields to pass when creating a zone, visit Dataplex create zone API.
A simple zone configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
EXAMPLE_ZONE = {
"type_": "RAW",
"resource_spec": {"location_type": "SINGLE_REGION"},
}
With this configuration we can create a zone:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
create_zone = DataplexCreateZoneOperator(
task_id="create_zone",
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
body=EXAMPLE_ZONE,
zone_id=ZONE_ID,
)
Delete a zone¶
To delete a zone you can use:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
delete_zone = DataplexDeleteZoneOperator(
task_id="delete_zone",
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
zone_id=ZONE_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
Create an asset¶
Before you create a Dataplex asset you need to define its body.
For more information about the available fields to pass when creating an asset, visit Dataplex create asset API.
A simple asset configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
EXAMPLE_ASSET = {
"resource_spec": {"name": f"projects/{PROJECT_ID}/datasets/{DATASET}", "type_": "BIGQUERY_DATASET"},
"discovery_spec": {"enabled": True},
}
With this configuration we can create the asset:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
create_asset = DataplexCreateAssetOperator(
task_id="create_asset",
project_id=PROJECT_ID,
region=REGION,
body=EXAMPLE_ASSET,
lake_id=LAKE_ID,
zone_id=ZONE_ID,
asset_id=ASSET_ID,
)
Delete an asset¶
To delete an asset you can use:
google/tests/system/google/cloud/dataplex/example_dataplex_dq.py
delete_asset = DataplexDeleteAssetOperator(
task_id="delete_asset",
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
zone_id=ZONE_ID,
asset_id=ASSET_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
Create or update a Data Profile scan¶
Before you create a Dataplex Data Profile scan you need to define its body. For more information about the available fields to pass when creating a Data Profile scan, visit Dataplex create data profile API.
A simple Data Profile scan configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
EXAMPLE_DATA_SCAN = dataplex_v1.DataScan()
EXAMPLE_DATA_SCAN.data.entity = (
f"projects/{PROJECT_ID}/locations/{REGION}/lakes/{LAKE_ID}/zones/{ZONE_ID}/entities/{TABLE_1}"
)
EXAMPLE_DATA_SCAN.data.resource = (
f"//bigquery.googleapis.com/projects/{PROJECT_ID}/datasets/{DATASET}/tables/{TABLE_1}"
)
EXAMPLE_DATA_SCAN.data_profile_spec = DataProfileSpec({})
With this configuration we can create or update the Data Profile scan:
DataplexCreateOrUpdateDataProfileScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
create_data_scan = DataplexCreateOrUpdateDataProfileScanOperator(
task_id="create_data_scan",
project_id=PROJECT_ID,
region=REGION,
body=EXAMPLE_DATA_SCAN,
data_scan_id=DATA_SCAN_ID,
)
Get a Data Profile scan¶
To get a Data Profile scan you can use:
DataplexGetDataProfileScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
get_data_scan = DataplexGetDataProfileScanOperator(
task_id="get_data_scan",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
Delete a Data Profile scan¶
To delete a Data Profile scan you can use:
DataplexDeleteDataProfileScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
delete_data_scan = DataplexDeleteDataProfileScanOperator(
task_id="delete_data_scan",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
Run a Data Profile scan¶
You can run Dataplex Data Profile scan in asynchronous modes to later check its status using sensor:
DataplexRunDataProfileScanOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
run_data_scan_async = DataplexRunDataProfileScanOperator(
task_id="run_data_scan_async",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
asynchronous=True,
)
To check that running Dataplex Data Profile scan succeeded you can use:
DataplexDataProfileJobStatusSensor
.
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
get_data_scan_job_status = DataplexDataProfileJobStatusSensor(
task_id="get_data_scan_job_status",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
job_id="{{ task_instance.xcom_pull('run_data_scan_async') }}",
)
Also for this action you can use operator in the deferrable mode:
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
run_data_scan_def = DataplexRunDataProfileScanOperator(
task_id="run_data_scan_def",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
deferrable=True,
)
Get a Data Profile scan job¶
To get a Data Profile scan job you can use:
DataplexGetDataProfileScanResultOperator
google/tests/system/google/cloud/dataplex/example_dataplex_dp.py
get_data_scan_job_result_2 = DataplexGetDataProfileScanResultOperator(
task_id="get_data_scan_job_result_2",
project_id=PROJECT_ID,
region=REGION,
data_scan_id=DATA_SCAN_ID,
)
Google Dataplex Catalog Operators¶
Dataplex Catalog provides a unified inventory of Google Cloud resources, such as BigQuery, and other resources, such as on-premises resources. Dataplex Catalog automatically retrieves metadata for Google Cloud resources, and you bring metadata for third-party resources into Dataplex Catalog.
For more information about Dataplex Catalog visit Dataplex Catalog production documentation <Product documentation
Create an EntryGroup¶
To create an Entry Group in specific location in Dataplex Catalog you can
use DataplexCatalogCreateEntryGroupOperator
For more information about the available fields to pass when creating an Entry Group, visit Entry Group resource configuration.
A simple Entry Group configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
ENTRY_GROUP_BODY = {"display_name": "Display Name", "description": "Some description"}
With this configuration you can create an Entry Group resource:
DataplexCatalogCreateEntryGroupOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
create_entry_group = DataplexCatalogCreateEntryGroupOperator(
task_id="create_entry_group",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_group_id=ENTRY_GROUP_NAME,
entry_group_configuration=ENTRY_GROUP_BODY,
validate_request=False,
)
Delete an EntryGroup¶
To delete an Entry Group in specific location in Dataplex Catalog you can
use DataplexCatalogDeleteEntryGroupOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
delete_entry_group = DataplexCatalogDeleteEntryGroupOperator(
task_id="delete_entry_group",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_group_id=ENTRY_GROUP_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
List EntryGroups¶
To list all Entry Groups in specific location in Dataplex Catalog you can
use DataplexCatalogListEntryGroupsOperator
.
This operator also supports filtering and ordering the result of the operation.
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
list_entry_group = DataplexCatalogListEntryGroupsOperator(
task_id="list_entry_group",
project_id=PROJECT_ID,
location=GCP_LOCATION,
order_by="name",
filter_by='display_name = "Display Name"',
)
Get an EntryGroup¶
To retrieve an Entry Group in specific location in Dataplex Catalog you can
use DataplexCatalogGetEntryGroupOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
get_entry_group = DataplexCatalogGetEntryGroupOperator(
task_id="get_entry_group",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_group_id=ENTRY_GROUP_NAME,
)
Update an EntryGroup¶
To update an Entry Group in specific location in Dataplex Catalog you can
use DataplexCatalogUpdateEntryGroupOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
update_entry_group = DataplexCatalogUpdateEntryGroupOperator(
task_id="update_entry_group",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_group_id=ENTRY_GROUP_NAME,
entry_group_configuration={"display_name": "Updated Display Name"},
update_mask=["display_name"],
)
Create an EntryType¶
To create an Entry Type in specific location in Dataplex Catalog you can
use DataplexCatalogCreateEntryTypeOperator
For more information about the available fields to pass when creating an Entry Type, visit Entry Type resource configuration.
A simple Entry Group configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
ENTRY_TYPE_BODY = {"display_name": "Display Name", "description": "Some description"}
With this configuration you can create an Entry Type resource:
DataplexCatalogCreateEntryTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
create_entry_type = DataplexCatalogCreateEntryTypeOperator(
task_id="create_entry_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_type_id=ENTRY_TYPE_NAME,
entry_type_configuration=ENTRY_TYPE_BODY,
validate_request=False,
)
Delete an EntryType¶
To delete an Entry Type in specific location in Dataplex Catalog you can
use DataplexCatalogDeleteEntryTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
delete_entry_type = DataplexCatalogDeleteEntryTypeOperator(
task_id="delete_entry_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_type_id=ENTRY_TYPE_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
List EntryTypes¶
To list all Entry Types in specific location in Dataplex Catalog you can
use DataplexCatalogListEntryTypesOperator
.
This operator also supports filtering and ordering the result of the operation.
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
list_entry_type = DataplexCatalogListEntryTypesOperator(
task_id="list_entry_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
order_by="name",
filter_by='display_name = "Display Name"',
)
Get an EntryType¶
To retrieve an Entry Group in specific location in Dataplex Catalog you can
use DataplexCatalogGetEntryTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
get_entry_type = DataplexCatalogGetEntryTypeOperator(
task_id="get_entry_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_type_id=ENTRY_TYPE_NAME,
)
Update an EntryType¶
To update an Entry Type in specific location in Dataplex Catalog you can
use DataplexCatalogUpdateEntryTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
update_entry_type = DataplexCatalogUpdateEntryTypeOperator(
task_id="update_entry_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_type_id=ENTRY_TYPE_NAME,
entry_type_configuration={"display_name": "Updated Display Name"},
update_mask=["display_name"],
)
Create an AspectType¶
To create an Aspect Type in specific location in Dataplex Catalog you can
use DataplexCatalogCreateAspectTypeOperator
For more information about the available fields to pass when creating an Aspect Type, visit Aspect Type resource configuration.
A simple Aspect Group configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
ASPECT_TYPE_BODY = {
"display_name": "Sample AspectType",
"description": "A simple AspectType for demonstration purposes.",
"metadata_template": {
"name": "sample_field",
"type": "record",
"annotations": {
"display_name": "Sample Field",
"description": "A sample field within the AspectType.",
},
},
}
With this configuration you can create an Aspect Type resource:
DataplexCatalogCreateAspectTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
create_aspect_type = DataplexCatalogCreateAspectTypeOperator(
task_id="create_aspect_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
aspect_type_id=ASPECT_TYPE_NAME,
aspect_type_configuration=ASPECT_TYPE_BODY,
validate_request=False,
)
Delete an AspectType¶
To delete an Aspect Type in specific location in Dataplex Catalog you can
use DataplexCatalogDeleteAspectTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
delete_aspect_type = DataplexCatalogDeleteAspectTypeOperator(
task_id="delete_aspect_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
aspect_type_id=ASPECT_TYPE_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
List AspectTypes¶
To list all Aspect Types in specific location in Dataplex Catalog you can
use DataplexCatalogListAspectTypesOperator
.
This operator also supports filtering and ordering the result of the operation.
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
list_aspect_type = DataplexCatalogListAspectTypesOperator(
task_id="list_aspect_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
order_by="name",
filter_by='display_name = "Display Name"',
)
Get an AspectType¶
To retrieve an Aspect Group in specific location in Dataplex Catalog you can
use DataplexCatalogGetAspectTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
get_aspect_type = DataplexCatalogGetAspectTypeOperator(
task_id="get_aspect_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
aspect_type_id=ASPECT_TYPE_NAME,
)
Update an AspectType¶
To update an Aspect Type in specific location in Dataplex Catalog you can
use DataplexCatalogUpdateAspectTypeOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
update_aspect_type = DataplexCatalogUpdateAspectTypeOperator(
task_id="update_aspect_type",
project_id=PROJECT_ID,
location=GCP_LOCATION,
aspect_type_id=ASPECT_TYPE_NAME,
aspect_type_configuration={"display_name": "Updated Display Name"},
update_mask=["display_name"],
)
Create an Entry¶
To create an Entry in specific location in Dataplex Catalog you can
use DataplexCatalogCreateEntryOperator
For more information about the available fields to pass when creating an Entry, visit Entry resource configuration.
A simple Entry configuration can look as followed:
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
ENTRY_BODY = {
"name": f"projects/{PROJECT_ID}/locations/{GCP_LOCATION}/entryGroups/{ENTRY_GROUP_NAME}/entries/{ENTRY_NAME}",
"entry_type": f"projects/{PROJECT_ID}/locations/{GCP_LOCATION}/entryTypes/{ENTRY_TYPE_NAME}",
}
With this configuration you can create an Entry resource:
DataplexCatalogCreateEntryOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
create_entry = DataplexCatalogCreateEntryOperator(
task_id="create_entry",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_id=ENTRY_NAME,
entry_group_id=ENTRY_GROUP_NAME,
entry_configuration=ENTRY_BODY,
)
Delete an Entry¶
To delete an Entry in specific location in Dataplex Catalog you can
use DataplexCatalogDeleteEntryOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
delete_entry = DataplexCatalogDeleteEntryOperator(
task_id="delete_entry",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_id=ENTRY_NAME,
entry_group_id=ENTRY_GROUP_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
List Entries¶
To list all Entries in specific location in Dataplex Catalog you can
use DataplexCatalogListEntriesOperator
.
This operator also supports filtering and ordering the result of the operation.
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
list_entry = DataplexCatalogListEntriesOperator(
task_id="list_entry",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_group_id=ENTRY_GROUP_NAME,
)
Get an Entry¶
To retrieve an Entry in specific location in Dataplex Catalog you can
use DataplexCatalogGetEntryOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
get_entry = DataplexCatalogGetEntryOperator(
task_id="get_entry",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_id=ENTRY_NAME,
entry_group_id=ENTRY_GROUP_NAME,
)
Update an Entry¶
To update an Entry in specific location in Dataplex Catalog you can
use DataplexCatalogUpdateEntryOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
update_entry = DataplexCatalogUpdateEntryOperator(
task_id="update_entry",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_id=ENTRY_NAME,
entry_group_id=ENTRY_GROUP_NAME,
entry_configuration={
"fully_qualified_name": f"dataplex:{PROJECT_ID}.{GCP_LOCATION}.{ENTRY_GROUP_NAME}.some-entry"
},
update_mask=["fully_qualified_name"],
)
Look up a single Entry¶
To look up a single Entry by name using the permission on the source system in Dataplex Catalog you can
use DataplexCatalogLookupEntryOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
lookup_entry = DataplexCatalogLookupEntryOperator(
task_id="lookup_entry",
project_id=PROJECT_ID,
location=GCP_LOCATION,
entry_id=ENTRY_NAME,
entry_group_id=ENTRY_GROUP_NAME,
)
Search Entries¶
To search for Entries matching the given query and scope in Dataplex Catalog you can
use DataplexCatalogSearchEntriesOperator
google/tests/system/google/cloud/dataplex/example_dataplex_catalog.py
search_entry = DataplexCatalogSearchEntriesOperator(
task_id="search_entry",
project_id=PROJECT_ID,
location="global",
query="displayname:Display Name",
)