Source code for tests.system.providers.google.cloud.vertex_ai.example_vertex_ai_pipeline_job

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.


"""
Example Airflow DAG for Google Vertex AI service testing Pipeline Job operations.
"""

from __future__ import annotations

import os
from datetime import datetime

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.gcs import (
    GCSCreateBucketOperator,
    GCSDeleteBucketOperator,
    GCSDeleteObjectsOperator,
    GCSListObjectsOperator,
    GCSSynchronizeBucketsOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.pipeline_job import (
    DeletePipelineJobOperator,
    GetPipelineJobOperator,
    ListPipelineJobOperator,
    RunPipelineJobOperator,
)
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]DAG_ID = "vertex_ai_pipeline_job_operations"
[docs]REGION = "us-central1"
[docs]DISPLAY_NAME = f"pipeline-job-{ENV_ID}"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]DATA_SAMPLE_GCS_BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}".replace("_", "-")
[docs]TEMPLATE_PATH = "https://us-kfp.pkg.dev/ml-pipeline/google-cloud-registry/automl-tabular/sha256:85e4218fc6604ee82353c9d2ebba20289eb1b71930798c0bb8ce32d8a10de146"
[docs]OUTPUT_BUCKET = f"gs://{DATA_SAMPLE_GCS_BUCKET_NAME}"
[docs]PARAMETER_VALUES = { "train_budget_milli_node_hours": 2000, "optimization_objective": "minimize-log-loss", "project": PROJECT_ID, "location": REGION, "root_dir": OUTPUT_BUCKET, "target_column": "Adopted", "training_fraction": 0.8, "validation_fraction": 0.1, "test_fraction": 0.1, "prediction_type": "classification", "data_source_csv_filenames": f"gs://{DATA_SAMPLE_GCS_BUCKET_NAME}/vertex-ai/tabular-dataset.csv", "transformations": f"gs://{DATA_SAMPLE_GCS_BUCKET_NAME}/vertex-ai/column_transformations.json", }
with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "vertex_ai", "pipeline_job"], ) as dag:
[docs] create_bucket = GCSCreateBucketOperator( task_id="create_bucket", bucket_name=DATA_SAMPLE_GCS_BUCKET_NAME, storage_class="REGIONAL", location=REGION, )
move_pipeline_files = GCSSynchronizeBucketsOperator( task_id="move_files_to_bucket", source_bucket=RESOURCE_DATA_BUCKET, source_object="vertex-ai/pipeline", destination_bucket=DATA_SAMPLE_GCS_BUCKET_NAME, destination_object="vertex-ai", recursive=True, ) # [START how_to_cloud_vertex_ai_run_pipeline_job_operator] run_pipeline_job = RunPipelineJobOperator( task_id="run_pipeline_job", display_name=DISPLAY_NAME, template_path=TEMPLATE_PATH, parameter_values=PARAMETER_VALUES, region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_run_pipeline_job_operator] # [START how_to_cloud_vertex_ai_get_pipeline_job_operator] get_pipeline_job = GetPipelineJobOperator( task_id="get_pipeline_job", project_id=PROJECT_ID, region=REGION, pipeline_job_id="{{ task_instance.xcom_pull(" "task_ids='run_pipeline_job', key='pipeline_job_id') }}", ) # [END how_to_cloud_vertex_ai_get_pipeline_job_operator] # [START how_to_cloud_vertex_ai_delete_pipeline_job_operator] delete_pipeline_job = DeletePipelineJobOperator( task_id="delete_pipeline_job", project_id=PROJECT_ID, region=REGION, pipeline_job_id="{{ task_instance.xcom_pull(" "task_ids='run_pipeline_job', key='pipeline_job_id') }}", trigger_rule=TriggerRule.ALL_DONE, ) # [END how_to_cloud_vertex_ai_delete_pipeline_job_operator] # [START how_to_cloud_vertex_ai_list_pipeline_job_operator] list_pipeline_job = ListPipelineJobOperator( task_id="list_pipeline_job", region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_list_pipeline_job_operator] list_buckets = GCSListObjectsOperator(task_id="list_buckets", bucket=DATA_SAMPLE_GCS_BUCKET_NAME) delete_files = GCSDeleteObjectsOperator( task_id="delete_files", bucket_name=DATA_SAMPLE_GCS_BUCKET_NAME, objects=list_buckets.output ) delete_bucket = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=DATA_SAMPLE_GCS_BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP create_bucket >> move_pipeline_files # TEST BODY >> run_pipeline_job >> get_pipeline_job >> delete_pipeline_job >> list_pipeline_job # TEST TEARDOWN >> list_buckets >> delete_files >> delete_bucket ) # ### Everything below this line is not part of example ### # ### Just for system tests purpose ### from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?