Source code for tests.system.providers.google.cloud.kubernetes_engine.example_kubernetes_engine_kueue

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Kubernetes Engine.
"""

from __future__ import annotations

import os
from datetime import datetime

from kubernetes.client import models as k8s

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.kubernetes_engine import (
    GKECreateClusterOperator,
    GKECreateCustomResourceOperator,
    GKEDeleteClusterOperator,
    GKEStartKueueInsideClusterOperator,
    GKEStartKueueJobOperator,
)
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "example_kubernetes_engine_kueue"
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]GCP_LOCATION = "europe-west3"
[docs]CLUSTER_NAME = f"gke-kueue-{ENV_ID}".replace("_", "-")
[docs]CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1, "autopilot": {"enabled": True}}
[docs]flavor_conf = """ apiVersion: kueue.x-k8s.io/v1beta1 kind: ResourceFlavor metadata: name: default-flavor """
[docs]cluster_conf = """ apiVersion: kueue.x-k8s.io/v1beta1 kind: ClusterQueue metadata: name: cluster-queue spec: namespaceSelector: {} queueingStrategy: BestEffortFIFO resourceGroups: - coveredResources: ["cpu", "memory", "nvidia.com/gpu", "ephemeral-storage"] flavors: - name: "default-flavor" resources: - name: "cpu" nominalQuota: 10 - name: "memory" nominalQuota: 10Gi - name: "nvidia.com/gpu" nominalQuota: 10 - name: "ephemeral-storage" nominalQuota: 10Gi """
[docs]QUEUE_NAME = "local-queue"
[docs]local_conf = f""" apiVersion: kueue.x-k8s.io/v1beta1 kind: LocalQueue metadata: namespace: default # LocalQueue under team-a namespace name: {QUEUE_NAME} spec: clusterQueue: cluster-queue # Point to the ClusterQueue """
with DAG( DAG_ID, schedule="@once", # Override to match your needs start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "kubernetes-engine", "kueue"], ) as dag:
[docs] create_cluster = GKECreateClusterOperator( task_id="create_cluster", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, body=CLUSTER, )
# [START howto_operator_gke_install_kueue] add_kueue_cluster = GKEStartKueueInsideClusterOperator( task_id="add_kueue_cluster", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, kueue_version="v0.6.2", ) # [END howto_operator_gke_install_kueue] create_resource_flavor = GKECreateCustomResourceOperator( task_id="create_resource_flavor", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, yaml_conf=flavor_conf, custom_resource_definition=True, namespaced=False, ) create_cluster_queue = GKECreateCustomResourceOperator( task_id="create_cluster_queue", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, yaml_conf=cluster_conf, custom_resource_definition=True, namespaced=False, ) create_local_queue = GKECreateCustomResourceOperator( task_id="create_local_queue", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, yaml_conf=local_conf, custom_resource_definition=True, ) # [START howto_operator_kueue_start_job] kueue_job_task = GKEStartKueueJobOperator( task_id="kueue_job_task", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, queue_name=QUEUE_NAME, namespace="default", parallelism=3, image="perl:5.34.0", cmds=["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"], name="test-pi", suspend=True, container_resources=k8s.V1ResourceRequirements( requests={ "cpu": 1, "memory": "200Mi", }, ), ) # [END howto_operator_kueue_start_job] delete_cluster = GKEDeleteClusterOperator( task_id="delete_cluster", name=CLUSTER_NAME, project_id=GCP_PROJECT_ID, location=GCP_LOCATION, trigger_rule=TriggerRule.ALL_DONE, ) ( create_cluster >> add_kueue_cluster >> create_resource_flavor >> create_cluster_queue >> create_local_queue >> kueue_job_task >> delete_cluster ) from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?