Source code for

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
Example Airflow DAG for asynchronous mode of Google Kubernetes Engine.

from __future__ import annotations

import os
from datetime import datetime

from airflow.models.dag import DAG
from airflow.operators.bash import BashOperator
from import (
from airflow.utils.trigger_rule import TriggerRule

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "kubernetes_engine_async"
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]GCP_LOCATION = "europe-north1-a"
[docs]CLUSTER_NAME = f"gke-async-{ENV_ID}".replace("_", "-")
[docs]CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1}
with DAG( DAG_ID, schedule="@once", # Override to match your needs start_date=datetime(2021, 1, 1), catchup=False, tags=["example"], ) as dag: # [START howto_operator_gke_create_cluster_async]
[docs] create_cluster = GKECreateClusterOperator( task_id="create_cluster", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, body=CLUSTER, deferrable=True, )
# [END howto_operator_gke_create_cluster_async] pod_task = GKEStartPodOperator( task_id="pod_task", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, namespace="default", image="perl", name="test-pod-async", in_cluster=False, on_finish_action="delete_pod", get_logs=True, deferrable=True, ) # [START howto_operator_gke_start_pod_xcom_async] pod_task_xcom_async = GKEStartPodOperator( task_id="pod_task_xcom_async", project_id=GCP_PROJECT_ID, location=GCP_LOCATION, cluster_name=CLUSTER_NAME, namespace="default", image="alpine", cmds=["sh", "-c", "mkdir -p /airflow/xcom/;echo '[1,2,3,4]' > /airflow/xcom/return.json"], name="test-pod-xcom-async", in_cluster=False, on_finish_action="delete_pod", do_xcom_push=True, deferrable=True, get_logs=True, ) # [END howto_operator_gke_start_pod_xcom_async] # [START howto_operator_gke_xcom_result_async] pod_task_xcom_result = BashOperator( bash_command="echo \"{{ task_instance.xcom_pull('pod_task_xcom_async')[0] }}\"", task_id="pod_task_xcom_result", ) # [END howto_operator_gke_xcom_result_async] # [START howto_operator_gke_delete_cluster_async] delete_cluster = GKEDeleteClusterOperator( task_id="delete_cluster", name=CLUSTER_NAME, project_id=GCP_PROJECT_ID, location=GCP_LOCATION, deferrable=True, ) # [END howto_operator_gke_delete_cluster_async] delete_cluster.trigger_rule = TriggerRule.ALL_DONE create_cluster >> [pod_task, pod_task_xcom_async] >> delete_cluster pod_task_xcom_async >> pod_task_xcom_result from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/
[docs]test_run = get_test_run(dag)

Was this entry helpful?