#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Kubernetes Engine.
"""
from __future__ import annotations
import os
from datetime import datetime
from airflow import models
from airflow.operators.bash import BashOperator
from airflow.providers.google.cloud.operators.kubernetes_engine import (
GKECreateClusterOperator,
GKEDeleteClusterOperator,
GKEStartPodOperator,
)
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "kubernetes_engine"
[docs]GCP_PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]GCP_LOCATION = "europe-north1-a"
[docs]CLUSTER_NAME = f"cluster-name-test-build-{ENV_ID}"
# [START howto_operator_gcp_gke_create_cluster_definition]
[docs]CLUSTER = {"name": CLUSTER_NAME, "initial_node_count": 1}
# [END howto_operator_gcp_gke_create_cluster_definition]
with models.DAG(
DAG_ID,
schedule="@once", # Override to match your needs
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example"],
) as dag:
# [START howto_operator_gke_create_cluster]
[docs] create_cluster = GKECreateClusterOperator(
task_id="create_cluster",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
body=CLUSTER,
)
# [END howto_operator_gke_create_cluster]
pod_task = GKEStartPodOperator(
task_id="pod_task",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
namespace="default",
image="perl",
name="test-pod",
in_cluster=False,
is_delete_operator_pod=True,
)
# [START howto_operator_gke_start_pod_xcom]
pod_task_xcom = GKEStartPodOperator(
task_id="pod_task_xcom",
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
cluster_name=CLUSTER_NAME,
do_xcom_push=True,
namespace="default",
image="alpine",
cmds=["sh", "-c", "mkdir -p /airflow/xcom/;echo '[1,2,3,4]' > /airflow/xcom/return.json"],
name="test-pod-xcom",
in_cluster=False,
is_delete_operator_pod=True,
)
# [END howto_operator_gke_start_pod_xcom]
# [START howto_operator_gke_xcom_result]
pod_task_xcom_result = BashOperator(
bash_command="echo \"{{ task_instance.xcom_pull('pod_task_xcom')[0] }}\"",
task_id="pod_task_xcom_result",
)
# [END howto_operator_gke_xcom_result]
# [START howto_operator_gke_delete_cluster]
delete_cluster = GKEDeleteClusterOperator(
task_id="delete_cluster",
name=CLUSTER_NAME,
project_id=GCP_PROJECT_ID,
location=GCP_LOCATION,
)
# [END howto_operator_gke_delete_cluster]
create_cluster >> pod_task >> delete_cluster
create_cluster >> pod_task_xcom >> delete_cluster
pod_task_xcom >> pod_task_xcom_result
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)