Source code for

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
Example Airflow DAG for Dataproc workflow operators.
from __future__ import annotations

import os
from datetime import datetime

from airflow import models
from import (

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "dataproc_workflow"
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "")
[docs]REGION = "europe-west1"
[docs]CLUSTER_NAME = f"cluster-dataproc-workflow-{ENV_ID}"
[docs]CLUSTER_CONFIG = { "master_config": { "num_instances": 1, "machine_type_uri": "n1-standard-4", "disk_config": {"boot_disk_type": "pd-standard", "boot_disk_size_gb": 1024}, }, "worker_config": { "num_instances": 2, "machine_type_uri": "n1-standard-4", "disk_config": {"boot_disk_type": "pd-standard", "boot_disk_size_gb": 1024},
}, }
[docs]PIG_JOB = {"query_list": {"queries": ["define sin HiveUDF('sin');"]}}
[docs]WORKFLOW_NAME = "airflow-dataproc-test"
[docs]WORKFLOW_TEMPLATE = { "id": WORKFLOW_NAME, "placement": { "managed_cluster": { "cluster_name": CLUSTER_NAME, "config": CLUSTER_CONFIG, } }, "jobs": [{"step_id": "pig_job_1", "pig_job": PIG_JOB}],
} with models.DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "dataproc"], ) as dag: # [START how_to_cloud_dataproc_create_workflow_template]
[docs] create_workflow_template = DataprocCreateWorkflowTemplateOperator( task_id="create_workflow_template", template=WORKFLOW_TEMPLATE, project_id=PROJECT_ID, region=REGION,
) # [END how_to_cloud_dataproc_create_workflow_template] # [START how_to_cloud_dataproc_trigger_workflow_template] trigger_workflow = DataprocInstantiateWorkflowTemplateOperator( task_id="trigger_workflow", region=REGION, project_id=PROJECT_ID, template_id=WORKFLOW_NAME ) # [END how_to_cloud_dataproc_trigger_workflow_template] # [START how_to_cloud_dataproc_instantiate_inline_workflow_template] instantiate_inline_workflow_template = DataprocInstantiateInlineWorkflowTemplateOperator( task_id="instantiate_inline_workflow_template", template=WORKFLOW_TEMPLATE, region=REGION ) # [END how_to_cloud_dataproc_instantiate_inline_workflow_template] create_workflow_template >> trigger_workflow >> instantiate_inline_workflow_template from tests.system.utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "teardown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests.system.utils import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/
[docs]test_run = get_test_run(dag)

Was this entry helpful?