Source code for tests.system.google.cloud.vertex_ai.example_vertex_ai_endpoint

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.


"""
Example Airflow DAG for Google Vertex AI service testing Endpoint Service operations.
"""

from __future__ import annotations

import os
from datetime import datetime

from google.cloud.aiplatform import schema
from google.protobuf.struct_pb2 import Value

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.vertex_ai.auto_ml import (
    CreateAutoMLImageTrainingJobOperator,
    DeleteAutoMLTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
    CreateDatasetOperator,
    DeleteDatasetOperator,
    ImportDataOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.endpoint_service import (
    CreateEndpointOperator,
    DeleteEndpointOperator,
    DeployModelOperator,
    ListEndpointsOperator,
    UndeployModelOperator,
)
from airflow.utils.trigger_rule import TriggerRule

[docs] ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs] PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs] DAG_ID = "vertex_ai_endpoint_service_operations"
[docs] REGION = "us-central1"
[docs] IMAGE_DISPLAY_NAME = f"auto-ml-image-{ENV_ID}"
[docs] MODEL_DISPLAY_NAME = f"auto-ml-image-model-{ENV_ID}"
[docs] RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs] IMAGE_DATASET = { "display_name": f"image-dataset-{ENV_ID}", "metadata_schema_uri": schema.dataset.metadata.image, "metadata": Value(string_value="image-dataset"), }
[docs] IMAGE_DATA_CONFIG = [ { "import_schema_uri": schema.dataset.ioformat.image.single_label_classification, "gcs_source": {"uris": [f"gs://{RESOURCE_DATA_BUCKET}/vertex-ai/datasets/flowers-dataset.csv"]}, }, ]
[docs] ENDPOINT_CONF = { "display_name": f"endpoint_test_{ENV_ID}", }
with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, render_template_as_native_obj=True, tags=["example", "vertex_ai", "endpoint_service"], ) as dag:
[docs] create_image_dataset = CreateDatasetOperator( task_id="image_dataset", dataset=IMAGE_DATASET, region=REGION, project_id=PROJECT_ID, )
image_dataset_id = create_image_dataset.output["dataset_id"] import_image_dataset = ImportDataOperator( task_id="import_image_data", dataset_id=image_dataset_id, region=REGION, project_id=PROJECT_ID, import_configs=IMAGE_DATA_CONFIG, ) create_auto_ml_image_training_job = CreateAutoMLImageTrainingJobOperator( task_id="auto_ml_image_task", display_name=IMAGE_DISPLAY_NAME, dataset_id=image_dataset_id, prediction_type="classification", multi_label=False, model_type="CLOUD", training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, budget_milli_node_hours=8000, model_display_name=MODEL_DISPLAY_NAME, disable_early_stopping=False, region=REGION, project_id=PROJECT_ID, ) DEPLOYED_MODEL = { # format: 'projects/{project}/locations/{location}/models/{model}' "model": "{{ti.xcom_pull('auto_ml_image_task')['name']}}", "display_name": f"temp_endpoint_test_{ENV_ID}", "automatic_resources": { "min_replica_count": 1, "max_replica_count": 1, }, } # [START how_to_cloud_vertex_ai_create_endpoint_operator] create_endpoint = CreateEndpointOperator( task_id="create_endpoint", endpoint=ENDPOINT_CONF, region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_create_endpoint_operator] # [START how_to_cloud_vertex_ai_delete_endpoint_operator] delete_endpoint = DeleteEndpointOperator( task_id="delete_endpoint", endpoint_id=create_endpoint.output["endpoint_id"], region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_delete_endpoint_operator] # [START how_to_cloud_vertex_ai_list_endpoints_operator] list_endpoints = ListEndpointsOperator( task_id="list_endpoints", region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_list_endpoints_operator] # [START how_to_cloud_vertex_ai_deploy_model_operator] deploy_model = DeployModelOperator( task_id="deploy_model", endpoint_id=create_endpoint.output["endpoint_id"], deployed_model=DEPLOYED_MODEL, traffic_split={"0": 100}, region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_deploy_model_operator] # [START how_to_cloud_vertex_ai_undeploy_model_operator] undeploy_model = UndeployModelOperator( task_id="undeploy_model", endpoint_id=create_endpoint.output["endpoint_id"], deployed_model_id=deploy_model.output["deployed_model_id"], region=REGION, project_id=PROJECT_ID, ) # [END how_to_cloud_vertex_ai_undeploy_model_operator] delete_auto_ml_image_training_job = DeleteAutoMLTrainingJobOperator( task_id="delete_auto_ml_training_job", training_pipeline_id="{{ task_instance.xcom_pull(task_ids='auto_ml_image_task', " "key='training_id') }}", region=REGION, project_id=PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) delete_image_dataset = DeleteDatasetOperator( task_id="delete_image_dataset", dataset_id=image_dataset_id, region=REGION, project_id=PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP create_image_dataset >> import_image_dataset >> create_auto_ml_image_training_job # TEST BODY >> create_endpoint >> deploy_model >> undeploy_model >> delete_endpoint >> list_endpoints # TEST TEARDOWN >> delete_auto_ml_image_training_job >> delete_image_dataset ) # ### Everything below this line is not part of example ### # ### Just for system tests purpose ### from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs] test_run = get_test_run(dag)

Was this entry helpful?