#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Example Airflow DAG for Google Vertex AI service testing Custom Jobs operations."""
from __future__ import annotations
import os
from datetime import datetime
from google.cloud.aiplatform import schema
from google.protobuf.json_format import ParseDict
from google.protobuf.struct_pb2 import Value
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.gcs import (
GCSCreateBucketOperator,
GCSDeleteBucketOperator,
GCSSynchronizeBucketsOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.custom_job import (
CreateCustomContainerTrainingJobOperator,
DeleteCustomTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
CreateDatasetOperator,
DeleteDatasetOperator,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]
ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]
PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]
DAG_ID = "vertex_ai_custom_job_operations"
[docs]
CONTAINER_DISPLAY_NAME = f"train-housing-container-{ENV_ID}"
[docs]
MODEL_DISPLAY_NAME = f"container-housing-model-{ENV_ID}"
[docs]
RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]
CUSTOM_CONTAINER_GCS_BUCKET_NAME = f"bucket_cont_{DAG_ID}_{ENV_ID}".replace("_", "-")
[docs]
DATA_SAMPLE_GCS_OBJECT_NAME = "vertex-ai/california_housing_train.csv"
[docs]
def TABULAR_DATASET(bucket_name):
return {
"display_name": f"tabular-dataset-{ENV_ID}",
"metadata_schema_uri": schema.dataset.metadata.tabular,
"metadata": ParseDict(
{"input_config": {"gcs_source": {"uri": [f"gs://{bucket_name}/{DATA_SAMPLE_GCS_OBJECT_NAME}"]}}},
Value(),
),
}
[docs]
CUSTOM_CONTAINER_URI = "us-central1-docker.pkg.dev/airflow-system-tests-resources/system-tests/housing"
[docs]
MODEL_SERVING_CONTAINER_URI = "us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-2:latest"
[docs]
MACHINE_TYPE = "n1-standard-4"
[docs]
ACCELERATOR_TYPE = "ACCELERATOR_TYPE_UNSPECIFIED"
[docs]
TRAINING_FRACTION_SPLIT = 0.7
[docs]
TEST_FRACTION_SPLIT = 0.15
[docs]
VALIDATION_FRACTION_SPLIT = 0.15
with DAG(
f"{DAG_ID}_custom_container",
schedule="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "vertex_ai", "custom_job"],
) as dag:
[docs]
create_bucket = GCSCreateBucketOperator(
task_id="create_bucket",
bucket_name=CUSTOM_CONTAINER_GCS_BUCKET_NAME,
storage_class="REGIONAL",
location=REGION,
)
move_data_files = GCSSynchronizeBucketsOperator(
task_id="move_files_to_bucket",
source_bucket=RESOURCE_DATA_BUCKET,
source_object="vertex-ai/california-housing-data",
destination_bucket=CUSTOM_CONTAINER_GCS_BUCKET_NAME,
destination_object="vertex-ai",
recursive=True,
)
create_tabular_dataset = CreateDatasetOperator(
task_id="tabular_dataset",
dataset=TABULAR_DATASET(CUSTOM_CONTAINER_GCS_BUCKET_NAME),
region=REGION,
project_id=PROJECT_ID,
)
tabular_dataset_id = create_tabular_dataset.output["dataset_id"]
# [START how_to_cloud_vertex_ai_create_custom_container_training_job_operator]
create_custom_container_training_job = CreateCustomContainerTrainingJobOperator(
task_id="custom_container_task",
staging_bucket=f"gs://{CUSTOM_CONTAINER_GCS_BUCKET_NAME}",
display_name=CONTAINER_DISPLAY_NAME,
container_uri=CUSTOM_CONTAINER_URI,
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI,
# run params
dataset_id=tabular_dataset_id,
command=["python3", "task.py"],
model_display_name=MODEL_DISPLAY_NAME,
replica_count=REPLICA_COUNT,
machine_type=MACHINE_TYPE,
accelerator_type=ACCELERATOR_TYPE,
accelerator_count=ACCELERATOR_COUNT,
training_fraction_split=TRAINING_FRACTION_SPLIT,
validation_fraction_split=VALIDATION_FRACTION_SPLIT,
test_fraction_split=TEST_FRACTION_SPLIT,
region=REGION,
project_id=PROJECT_ID,
)
# [END how_to_cloud_vertex_ai_create_custom_container_training_job_operator]
# [START how_to_cloud_vertex_ai_create_custom_container_training_job_operator_deferrable]
create_custom_container_training_job_deferrable = CreateCustomContainerTrainingJobOperator(
task_id="custom_container_task_deferrable",
staging_bucket=f"gs://{CUSTOM_CONTAINER_GCS_BUCKET_NAME}",
display_name=f"{CONTAINER_DISPLAY_NAME}-def",
container_uri=CUSTOM_CONTAINER_URI,
model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI,
# run params
dataset_id=tabular_dataset_id,
command=["python3", "task.py"],
model_display_name=f"{MODEL_DISPLAY_NAME}-def",
replica_count=REPLICA_COUNT,
machine_type=MACHINE_TYPE,
accelerator_type=ACCELERATOR_TYPE,
accelerator_count=ACCELERATOR_COUNT,
training_fraction_split=TRAINING_FRACTION_SPLIT,
validation_fraction_split=VALIDATION_FRACTION_SPLIT,
test_fraction_split=TEST_FRACTION_SPLIT,
region=REGION,
project_id=PROJECT_ID,
deferrable=True,
)
# [END how_to_cloud_vertex_ai_create_custom_container_training_job_operator_deferrable]
delete_custom_training_job = DeleteCustomTrainingJobOperator(
task_id="delete_custom_training_job",
training_pipeline_id="{{ task_instance.xcom_pull(task_ids='custom_container_task', "
"key='training_id') }}",
custom_job_id="{{ task_instance.xcom_pull(task_ids='custom_container_task', "
"key='custom_job_id') }}",
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_custom_training_job_deferrable = DeleteCustomTrainingJobOperator(
task_id="delete_custom_training_job_deferrable",
training_pipeline_id="{{ task_instance.xcom_pull(task_ids='custom_container_task_deferrable', "
"key='training_id') }}",
custom_job_id="{{ task_instance.xcom_pull(task_ids='custom_container_task_deferrable', "
"key='custom_job_id') }}",
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_tabular_dataset = DeleteDatasetOperator(
task_id="delete_tabular_dataset",
dataset_id=tabular_dataset_id,
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_bucket = GCSDeleteBucketOperator(
task_id="delete_bucket",
bucket_name=CUSTOM_CONTAINER_GCS_BUCKET_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
(
# TEST SETUP
create_bucket
>> move_data_files
>> create_tabular_dataset
# TEST BODY
>> [create_custom_container_training_job, create_custom_container_training_job_deferrable]
# TEST TEARDOWN
>> delete_custom_training_job
>> delete_custom_training_job_deferrable
>> delete_tabular_dataset
>> delete_bucket
)
# ### Everything below this line is not part of example ###
# ### Just for system tests purpose ###
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]
test_run = get_test_run(dag)