Source code for tests.system.google.cloud.natural_language.example_natural_language
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Google Cloud Natural Language service
"""
from __future__ import annotations
import os
from datetime import datetime
from google.cloud.language_v1 import Document
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.natural_language import (
CloudNaturalLanguageAnalyzeEntitiesOperator,
CloudNaturalLanguageAnalyzeEntitySentimentOperator,
CloudNaturalLanguageAnalyzeSentimentOperator,
CloudNaturalLanguageClassifyTextOperator,
)
from airflow.providers.standard.operators.bash import BashOperator
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]DAG_ID = "gcp_natural_language"
# [START howto_operator_gcp_natural_language_document_text]
[docs]TEXT = """Airflow is a platform to programmatically author, schedule and monitor workflows.
Use Airflow to author workflows as Directed Acyclic Graphs (DAGs) of tasks. The Airflow scheduler executes
your tasks on an array of workers while following the specified dependencies. Rich command line utilities
make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize
pipelines running in production, monitor progress, and troubleshoot issues when needed.
"""
[docs]document = Document(content=TEXT, type="PLAIN_TEXT")
# [END howto_operator_gcp_natural_language_document_text]
# [START howto_operator_gcp_natural_language_document_gcs]
[docs]GCS_CONTENT_URI = "gs://INVALID BUCKET NAME/sentiment-me.txt"
[docs]document_gcs = Document(gcs_content_uri=GCS_CONTENT_URI, type="PLAIN_TEXT")
# [END howto_operator_gcp_natural_language_document_gcs]
with DAG(
DAG_ID,
schedule="@once", # Override to match your needs
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "natural-language"],
) as dag:
# [START howto_operator_gcp_natural_language_analyze_entities]
[docs] analyze_entities = CloudNaturalLanguageAnalyzeEntitiesOperator(
document=document, task_id="analyze_entities"
)
# [END howto_operator_gcp_natural_language_analyze_entities]
# [START howto_operator_gcp_natural_language_analyze_entities_result]
analyze_entities_result = BashOperator(
bash_command=f"echo {analyze_entities.output}",
task_id="analyze_entities_result",
)
# [END howto_operator_gcp_natural_language_analyze_entities_result]
# [START howto_operator_gcp_natural_language_analyze_entity_sentiment]
analyze_entity_sentiment = CloudNaturalLanguageAnalyzeEntitySentimentOperator(
document=document, task_id="analyze_entity_sentiment"
)
# [END howto_operator_gcp_natural_language_analyze_entity_sentiment]
# [START howto_operator_gcp_natural_language_analyze_entity_sentiment_result]
analyze_entity_sentiment_result = BashOperator(
bash_command=f"echo {analyze_entity_sentiment.output}",
task_id="analyze_entity_sentiment_result",
)
# [END howto_operator_gcp_natural_language_analyze_entity_sentiment_result]
# [START howto_operator_gcp_natural_language_analyze_sentiment]
analyze_sentiment = CloudNaturalLanguageAnalyzeSentimentOperator(
document=document, task_id="analyze_sentiment"
)
# [END howto_operator_gcp_natural_language_analyze_sentiment]
# [START howto_operator_gcp_natural_language_analyze_sentiment_result]
analyze_sentiment_result = BashOperator(
bash_command=f"echo {analyze_sentiment.output}",
task_id="analyze_sentiment_result",
)
# [END howto_operator_gcp_natural_language_analyze_sentiment_result]
# [START howto_operator_gcp_natural_language_analyze_classify_text]
analyze_classify_text = CloudNaturalLanguageClassifyTextOperator(
document=document, task_id="analyze_classify_text"
)
# [END howto_operator_gcp_natural_language_analyze_classify_text]
# [START howto_operator_gcp_natural_language_analyze_classify_text_result]
analyze_classify_text_result = BashOperator(
bash_command=f"echo {analyze_classify_text.output}",
task_id="analyze_classify_text_result",
)
# [END howto_operator_gcp_natural_language_analyze_classify_text_result]
analyze_entities >> analyze_entities_result
analyze_entity_sentiment >> analyze_entity_sentiment_result
analyze_sentiment >> analyze_sentiment_result
analyze_classify_text >> analyze_classify_text_result
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)