Source code for tests.system.google.cloud.bigquery.example_bigquery_dts

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that creates and deletes Bigquery data transfer configurations.
"""

from __future__ import annotations

import os
import time
from datetime import datetime
from pathlib import Path
from typing import cast

from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.models.xcom_arg import XComArg
from airflow.providers.google.cloud.operators.bigquery import (
    BigQueryCreateEmptyDatasetOperator,
    BigQueryCreateEmptyTableOperator,
    BigQueryDeleteDatasetOperator,
)
from airflow.providers.google.cloud.operators.bigquery_dts import (
    BigQueryCreateDataTransferOperator,
    BigQueryDataTransferServiceStartTransferRunsOperator,
    BigQueryDeleteDataTransferConfigOperator,
)
from airflow.providers.google.cloud.operators.gcs import GCSCreateBucketOperator, GCSDeleteBucketOperator
from airflow.providers.google.cloud.sensors.bigquery_dts import BigQueryDataTransferServiceTransferRunSensor
from airflow.providers.google.cloud.transfers.local_to_gcs import LocalFilesystemToGCSOperator
from airflow.utils.trigger_rule import TriggerRule

from providers.tests.system.google import DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID

[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT") or DEFAULT_GCP_SYSTEM_TEST_PROJECT_ID
[docs]DAG_ID = "gcp_bigquery_dts"
[docs]BUCKET_NAME = f"bucket-{DAG_ID}-{ENV_ID}"
[docs]FILE_NAME = "us-states.csv"
[docs]CURRENT_FOLDER = Path(__file__).parent
[docs]FILE_LOCAL_PATH = str(Path(CURRENT_FOLDER) / "resources" / FILE_NAME)
[docs]BUCKET_URI = f"gs://{BUCKET_NAME}/{FILE_NAME}"
[docs]DATASET_NAME = f"dataset_{DAG_ID}_{ENV_ID}"
[docs]DTS_BQ_TABLE = "DTS_BQ_TABLE"
# [START howto_bigquery_dts_create_args] # In the case of Airflow, the customer needs to create a transfer # config with the automatic scheduling disabled and then trigger # a transfer run using a specialized Airflow operator
[docs]TRANSFER_CONFIG = { "destination_dataset_id": DATASET_NAME, "display_name": "test data transfer", "data_source_id": "google_cloud_storage", "schedule_options": {"disable_auto_scheduling": True}, "params": { "field_delimiter": ",", "max_bad_records": "0", "skip_leading_rows": "1", "data_path_template": BUCKET_URI, "destination_table_name_template": DTS_BQ_TABLE, "file_format": "CSV", }, }
# [END howto_bigquery_dts_create_args] with DAG( DAG_ID, schedule="@once", start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "bigquery"], ) as dag:
[docs] create_bucket = GCSCreateBucketOperator( task_id="create_bucket", bucket_name=BUCKET_NAME, project_id=PROJECT_ID )
upload_file = LocalFilesystemToGCSOperator( task_id="upload_file", src=FILE_LOCAL_PATH, dst=FILE_NAME, bucket=BUCKET_NAME, ) create_dataset = BigQueryCreateEmptyDatasetOperator(task_id="create_dataset", dataset_id=DATASET_NAME) create_table = BigQueryCreateEmptyTableOperator( task_id="create_table", dataset_id=DATASET_NAME, table_id=DTS_BQ_TABLE, schema_fields=[ {"name": "name", "type": "STRING", "mode": "REQUIRED"}, {"name": "post_abbr", "type": "STRING", "mode": "NULLABLE"}, ], ) # [START howto_bigquery_create_data_transfer] gcp_bigquery_create_transfer = BigQueryCreateDataTransferOperator( transfer_config=TRANSFER_CONFIG, project_id=PROJECT_ID, task_id="gcp_bigquery_create_transfer", ) transfer_config_id = cast(str, XComArg(gcp_bigquery_create_transfer, key="transfer_config_id")) # [END howto_bigquery_create_data_transfer] # [START howto_bigquery_start_transfer] gcp_bigquery_start_transfer = BigQueryDataTransferServiceStartTransferRunsOperator( task_id="gcp_bigquery_start_transfer", project_id=PROJECT_ID, transfer_config_id=transfer_config_id, requested_run_time={"seconds": int(time.time() + 60)}, ) # [END howto_bigquery_start_transfer] # [START howto_bigquery_dts_sensor] gcp_run_sensor = BigQueryDataTransferServiceTransferRunSensor( task_id="gcp_run_sensor", transfer_config_id=transfer_config_id, run_id=cast(str, XComArg(gcp_bigquery_start_transfer, key="run_id")), expected_statuses={"SUCCEEDED"}, ) # [END howto_bigquery_dts_sensor] # [START howto_bigquery_delete_data_transfer] gcp_bigquery_delete_transfer = BigQueryDeleteDataTransferConfigOperator( transfer_config_id=transfer_config_id, task_id="gcp_bigquery_delete_transfer" ) # [END howto_bigquery_delete_data_transfer] gcp_bigquery_delete_transfer.trigger_rule = TriggerRule.ALL_DONE delete_dataset = BigQueryDeleteDatasetOperator( task_id="delete_dataset", dataset_id=DATASET_NAME, delete_contents=True, trigger_rule=TriggerRule.ALL_DONE, ) delete_bucket = GCSDeleteBucketOperator( task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE ) # Task dependencies created via `XComArgs`: # gcp_bigquery_create_transfer >> gcp_bigquery_start_transfer # gcp_bigquery_create_transfer >> gcp_run_sensor # gcp_bigquery_start_transfer >> gcp_run_sensor # gcp_bigquery_create_transfer >> gcp_bigquery_delete_transfer chain( # TEST SETUP create_bucket, upload_file, create_dataset, create_table, # TEST BODY gcp_bigquery_create_transfer, gcp_bigquery_start_transfer, gcp_run_sensor, gcp_bigquery_delete_transfer, # TEST TEARDOWN delete_dataset, delete_bucket, ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?