#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""
from __future__ import annotations
import os
from datetime import datetime
from google.cloud.aiplatform import schema
from google.protobuf.struct_pb2 import Value
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.vertex_ai.auto_ml import (
CreateAutoMLImageTrainingJobOperator,
DeleteAutoMLTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
CreateDatasetOperator,
DeleteDatasetOperator,
ImportDataOperator,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]DAG_ID = "automl_vision_clss"
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]IMAGE_DISPLAY_NAME = f"automl-vision-clss-{ENV_ID}"
[docs]MODEL_DISPLAY_NAME = f"automl-vision-clss-model-{ENV_ID}"
[docs]RESOURCE_IMPORT_DATA_URI = (
"gs://airflow-system-tests-resources/automl/datasets/vision/img_classification_short.csv"
)
[docs]IMAGE_DATASET = {
"display_name": f"automl-vision-clss-dataset-{ENV_ID}",
"metadata_schema_uri": schema.dataset.metadata.image,
"metadata": Value(string_value="image-dataset"),
}
[docs]IMAGE_DATA_CONFIG = [
{
"import_schema_uri": schema.dataset.ioformat.image.single_label_classification,
"gcs_source": {"uris": [RESOURCE_IMPORT_DATA_URI]},
},
]
# Example DAG for AutoML Vision Classification
with DAG(
DAG_ID,
schedule="@once", # Override to match your needs
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "automl", "vision", "classification"],
) as dag:
[docs] create_image_dataset = CreateDatasetOperator(
task_id="image_dataset",
dataset=IMAGE_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
image_dataset_id = create_image_dataset.output["dataset_id"]
import_image_dataset = ImportDataOperator(
task_id="import_image_data",
dataset_id=image_dataset_id,
region=REGION,
project_id=PROJECT_ID,
import_configs=IMAGE_DATA_CONFIG,
)
# [START howto_cloud_create_image_classification_training_job_operator]
create_auto_ml_image_training_job = CreateAutoMLImageTrainingJobOperator(
task_id="auto_ml_image_task",
display_name=IMAGE_DISPLAY_NAME,
dataset_id=image_dataset_id,
prediction_type="classification",
multi_label=False,
model_type="CLOUD",
training_fraction_split=0.6,
validation_fraction_split=0.2,
test_fraction_split=0.2,
budget_milli_node_hours=8000,
model_display_name=MODEL_DISPLAY_NAME,
disable_early_stopping=False,
region=REGION,
project_id=PROJECT_ID,
)
# [END howto_cloud_create_image_classification_training_job_operator]
delete_auto_ml_image_training_job = DeleteAutoMLTrainingJobOperator(
task_id="delete_auto_ml_training_job",
training_pipeline_id="{{ task_instance.xcom_pull(task_ids='auto_ml_image_task', "
"key='training_id') }}",
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_image_dataset = DeleteDatasetOperator(
task_id="delete_image_dataset",
dataset_id=image_dataset_id,
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
(
# TEST SETUP
create_image_dataset
>> import_image_dataset
# TEST BODY
>> create_auto_ml_image_training_job
# TEST TEARDOWN
>> delete_auto_ml_image_training_job
>> delete_image_dataset
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)