Source code for tests.system.google.cloud.automl.example_automl_vision_classification

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""

from __future__ import annotations

import os
from datetime import datetime

from google.cloud.aiplatform import schema
from google.protobuf.struct_pb2 import Value

from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.vertex_ai.auto_ml import (
    CreateAutoMLImageTrainingJobOperator,
    DeleteAutoMLTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
    CreateDatasetOperator,
    DeleteDatasetOperator,
    ImportDataOperator,
)
from airflow.utils.trigger_rule import TriggerRule

[docs]DAG_ID = "automl_vision_clss"
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]REGION = "us-central1"
[docs]IMAGE_DISPLAY_NAME = f"automl-vision-clss-{ENV_ID}"
[docs]MODEL_DISPLAY_NAME = f"automl-vision-clss-model-{ENV_ID}"
[docs]RESOURCE_IMPORT_DATA_URI = ( "gs://airflow-system-tests-resources/automl/datasets/vision/img_classification_short.csv" )
[docs]IMAGE_DATASET = { "display_name": f"automl-vision-clss-dataset-{ENV_ID}", "metadata_schema_uri": schema.dataset.metadata.image, "metadata": Value(string_value="image-dataset"), }
[docs]IMAGE_DATA_CONFIG = [ { "import_schema_uri": schema.dataset.ioformat.image.single_label_classification, "gcs_source": {"uris": [RESOURCE_IMPORT_DATA_URI]}, }, ]
# Example DAG for AutoML Vision Classification with DAG( DAG_ID, schedule="@once", # Override to match your needs start_date=datetime(2021, 1, 1), catchup=False, tags=["example", "automl", "vision", "classification"], ) as dag:
[docs] create_image_dataset = CreateDatasetOperator( task_id="image_dataset", dataset=IMAGE_DATASET, region=REGION, project_id=PROJECT_ID, )
image_dataset_id = create_image_dataset.output["dataset_id"] import_image_dataset = ImportDataOperator( task_id="import_image_data", dataset_id=image_dataset_id, region=REGION, project_id=PROJECT_ID, import_configs=IMAGE_DATA_CONFIG, ) # [START howto_cloud_create_image_classification_training_job_operator] create_auto_ml_image_training_job = CreateAutoMLImageTrainingJobOperator( task_id="auto_ml_image_task", display_name=IMAGE_DISPLAY_NAME, dataset_id=image_dataset_id, prediction_type="classification", multi_label=False, model_type="CLOUD", training_fraction_split=0.6, validation_fraction_split=0.2, test_fraction_split=0.2, budget_milli_node_hours=8000, model_display_name=MODEL_DISPLAY_NAME, disable_early_stopping=False, region=REGION, project_id=PROJECT_ID, ) # [END howto_cloud_create_image_classification_training_job_operator] delete_auto_ml_image_training_job = DeleteAutoMLTrainingJobOperator( task_id="delete_auto_ml_training_job", training_pipeline_id="{{ task_instance.xcom_pull(task_ids='auto_ml_image_task', " "key='training_id') }}", region=REGION, project_id=PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) delete_image_dataset = DeleteDatasetOperator( task_id="delete_image_dataset", dataset_id=image_dataset_id, region=REGION, project_id=PROJECT_ID, trigger_rule=TriggerRule.ALL_DONE, ) ( # TEST SETUP create_image_dataset >> import_image_dataset # TEST BODY >> create_auto_ml_image_training_job # TEST TEARDOWN >> delete_auto_ml_image_training_job >> delete_image_dataset ) from tests_common.test_utils.watcher import watcher # This test needs watcher in order to properly mark success/failure # when "tearDown" task with trigger rule is part of the DAG list(dag.tasks) >> watcher() from tests_common.test_utils.system_tests import get_test_run # noqa: E402 # Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)

Was this entry helpful?