#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that uses Google AutoML services.
"""
from __future__ import annotations
import os
from datetime import datetime
from google.cloud.aiplatform import schema
from google.protobuf.struct_pb2 import Value
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.gcs import (
GCSCreateBucketOperator,
GCSDeleteBucketOperator,
GCSSynchronizeBucketsOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.auto_ml import (
CreateAutoMLVideoTrainingJobOperator,
DeleteAutoMLTrainingJobOperator,
)
from airflow.providers.google.cloud.operators.vertex_ai.dataset import (
CreateDatasetOperator,
DeleteDatasetOperator,
ImportDataOperator,
)
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID", "default")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT", "default")
[docs]DAG_ID = "automl_video_track"
[docs]VIDEO_DISPLAY_NAME = f"auto-ml-video-tracking-{ENV_ID}"
[docs]MODEL_DISPLAY_NAME = f"auto-ml-video-tracking-model-{ENV_ID}"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]VIDEO_GCS_BUCKET_NAME = f"bucket_video_tracking_{ENV_ID}".replace("_", "-")
[docs]VIDEO_DATASET = {
"display_name": f"video-dataset-{ENV_ID}",
"metadata_schema_uri": schema.dataset.metadata.video,
"metadata": Value(string_value="video-dataset"),
}
[docs]VIDEO_DATA_CONFIG = [
{
"import_schema_uri": schema.dataset.ioformat.video.object_tracking,
"gcs_source": {"uris": [f"gs://{VIDEO_GCS_BUCKET_NAME}/automl/tracking.csv"]},
},
]
# Example DAG for AutoML Video Intelligence Object Tracking
with DAG(
DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "auto_ml", "video", "tracking"],
) as dag:
[docs] create_bucket = GCSCreateBucketOperator(
task_id="create_bucket",
bucket_name=VIDEO_GCS_BUCKET_NAME,
storage_class="REGIONAL",
location=REGION,
)
move_dataset_file = GCSSynchronizeBucketsOperator(
task_id="move_dataset_to_bucket",
source_bucket=RESOURCE_DATA_BUCKET,
source_object="automl/datasets/video",
destination_bucket=VIDEO_GCS_BUCKET_NAME,
destination_object="automl",
recursive=True,
)
create_video_dataset = CreateDatasetOperator(
task_id="video_dataset",
dataset=VIDEO_DATASET,
region=REGION,
project_id=PROJECT_ID,
)
video_dataset_id = create_video_dataset.output["dataset_id"]
import_video_dataset = ImportDataOperator(
task_id="import_video_data",
dataset_id=video_dataset_id,
region=REGION,
project_id=PROJECT_ID,
import_configs=VIDEO_DATA_CONFIG,
)
# [START howto_cloud_create_video_tracking_training_job_operator]
create_auto_ml_video_training_job = CreateAutoMLVideoTrainingJobOperator(
task_id="auto_ml_video_task",
display_name=VIDEO_DISPLAY_NAME,
prediction_type="object_tracking",
model_type="CLOUD",
dataset_id=video_dataset_id,
model_display_name=MODEL_DISPLAY_NAME,
region=REGION,
project_id=PROJECT_ID,
)
# [END howto_cloud_create_video_tracking_training_job_operator]
delete_auto_ml_video_training_job = DeleteAutoMLTrainingJobOperator(
task_id="delete_auto_ml_video_training_job",
training_pipeline_id="{{ task_instance.xcom_pull(task_ids='auto_ml_video_task', "
"key='training_id') }}",
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_video_dataset = DeleteDatasetOperator(
task_id="delete_video_dataset",
dataset_id=video_dataset_id,
region=REGION,
project_id=PROJECT_ID,
trigger_rule=TriggerRule.ALL_DONE,
)
delete_bucket = GCSDeleteBucketOperator(
task_id="delete_bucket",
bucket_name=VIDEO_GCS_BUCKET_NAME,
trigger_rule=TriggerRule.ALL_DONE,
)
(
# TEST SETUP
[
create_bucket >> move_dataset_file,
create_video_dataset,
]
>> import_video_dataset
# TEST BODY
>> create_auto_ml_video_training_job
# TEST TEARDOWN
>> delete_auto_ml_video_training_job
>> delete_video_dataset
>> delete_bucket
)
from tests_common.test_utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests_common.test_utils.system_tests import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)