Source code for airflow.providers.google.cloud.triggers.vertex_ai

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations

from collections.abc import AsyncIterator, Sequence
from functools import cached_property
from typing import TYPE_CHECKING, Any

from google.cloud.aiplatform_v1 import (
    BatchPredictionJob,
    HyperparameterTuningJob,
    JobState,
    PipelineState,
    types,
)

from airflow.exceptions import AirflowException
from airflow.providers.google.cloud.hooks.vertex_ai.batch_prediction_job import BatchPredictionJobAsyncHook
from airflow.providers.google.cloud.hooks.vertex_ai.custom_job import CustomJobAsyncHook
from airflow.providers.google.cloud.hooks.vertex_ai.hyperparameter_tuning_job import (
    HyperparameterTuningJobAsyncHook,
)
from airflow.providers.google.cloud.hooks.vertex_ai.pipeline_job import PipelineJobAsyncHook
from airflow.triggers.base import BaseTrigger, TriggerEvent

if TYPE_CHECKING:
    from proto import Message


[docs]class BaseVertexAIJobTrigger(BaseTrigger): """ Base class for Vertex AI job triggers. This trigger polls the Vertex AI job and checks its status. In order to use it properly, you must: - implement the following methods `_wait_job()`. - override required `job_type_verbose_name` attribute to provide meaningful message describing your job type. - override required `job_serializer_class` attribute to provide proto.Message class that will be used to serialize your job with `to_dict()` class method. """
[docs] job_type_verbose_name: str = "Vertex AI Job"
[docs] job_serializer_class: Message = None
[docs] statuses_success = { JobState.JOB_STATE_PAUSED, JobState.JOB_STATE_SUCCEEDED, }
def __init__( self, conn_id: str, project_id: str, location: str, job_id: str, poll_interval: int, impersonation_chain: str | Sequence[str] | None = None, ): super().__init__() self.conn_id = conn_id self.project_id = project_id self.location = location self.job_id = job_id self.poll_interval = poll_interval self.impersonation_chain = impersonation_chain self.trigger_class_path = ( f"airflow.providers.google.cloud.triggers.vertex_ai.{self.__class__.__name__}" )
[docs] def serialize(self) -> tuple[str, dict[str, Any]]: return ( self.trigger_class_path, { "conn_id": self.conn_id, "project_id": self.project_id, "location": self.location, "job_id": self.job_id, "poll_interval": self.poll_interval, "impersonation_chain": self.impersonation_chain, }, )
[docs] async def run(self) -> AsyncIterator[TriggerEvent]: try: job = await self._wait_job() except AirflowException as ex: yield TriggerEvent( { "status": "error", "message": str(ex), } ) return status = "success" if job.state in self.statuses_success else "error" message = f"{self.job_type_verbose_name} {job.name} completed with status {job.state.name}" yield TriggerEvent( { "status": status, "message": message, "job": self._serialize_job(job), } )
async def _wait_job(self) -> Any: """Awaits a Vertex AI job instance for a status examination.""" raise NotImplementedError def _serialize_job(self, job: Any) -> Any: return self.job_serializer_class.to_dict(job)
[docs]class CreateHyperparameterTuningJobTrigger(BaseVertexAIJobTrigger): """CreateHyperparameterTuningJobTrigger run on the trigger worker to perform create operation."""
[docs] job_type_verbose_name = "Hyperparameter Tuning Job"
[docs] job_serializer_class = HyperparameterTuningJob
@cached_property
[docs] def async_hook(self) -> HyperparameterTuningJobAsyncHook: return HyperparameterTuningJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain )
async def _wait_job(self) -> types.HyperparameterTuningJob: job: types.HyperparameterTuningJob = await self.async_hook.wait_hyperparameter_tuning_job( project_id=self.project_id, location=self.location, job_id=self.job_id, poll_interval=self.poll_interval, ) return job
[docs]class CreateBatchPredictionJobTrigger(BaseVertexAIJobTrigger): """CreateBatchPredictionJobTrigger run on the trigger worker to perform create operation."""
[docs] job_type_verbose_name = "Batch Prediction Job"
[docs] job_serializer_class = BatchPredictionJob
@cached_property
[docs] def async_hook(self) -> BatchPredictionJobAsyncHook: return BatchPredictionJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain )
async def _wait_job(self) -> types.BatchPredictionJob: job: types.BatchPredictionJob = await self.async_hook.wait_batch_prediction_job( project_id=self.project_id, location=self.location, job_id=self.job_id, poll_interval=self.poll_interval, ) return job
[docs]class RunPipelineJobTrigger(BaseVertexAIJobTrigger): """Make async calls to Vertex AI to check the state of a Pipeline Job."""
[docs] job_type_verbose_name = "Pipeline Job"
[docs] job_serializer_class = types.PipelineJob
[docs] statuses_success = { PipelineState.PIPELINE_STATE_PAUSED, PipelineState.PIPELINE_STATE_SUCCEEDED, }
@cached_property
[docs] def async_hook(self) -> PipelineJobAsyncHook: return PipelineJobAsyncHook(gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain)
async def _wait_job(self) -> types.PipelineJob: job: types.PipelineJob = await self.async_hook.wait_for_pipeline_job( project_id=self.project_id, location=self.location, job_id=self.job_id, poll_interval=self.poll_interval, ) return job
[docs]class CustomTrainingJobTrigger(BaseVertexAIJobTrigger): """ Make async calls to Vertex AI to check the state of a running custom training job. Return the job when it enters a completed state. """
[docs] job_type_verbose_name = "Custom Training Job"
[docs] job_serializer_class = types.TrainingPipeline
[docs] statuses_success = { PipelineState.PIPELINE_STATE_PAUSED, PipelineState.PIPELINE_STATE_SUCCEEDED, }
@cached_property
[docs] def async_hook(self) -> CustomJobAsyncHook: return CustomJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain, )
async def _wait_job(self) -> types.TrainingPipeline: pipeline: types.TrainingPipeline = await self.async_hook.wait_for_training_pipeline( project_id=self.project_id, location=self.location, pipeline_id=self.job_id, poll_interval=self.poll_interval, ) return pipeline
[docs]class CustomContainerTrainingJobTrigger(BaseVertexAIJobTrigger): """ Make async calls to Vertex AI to check the state of a running custom container training job. Return the job when it enters a completed state. """
[docs] job_type_verbose_name = "Custom Container Training Job"
[docs] job_serializer_class = types.TrainingPipeline
[docs] statuses_success = { PipelineState.PIPELINE_STATE_PAUSED, PipelineState.PIPELINE_STATE_SUCCEEDED, }
@cached_property
[docs] def async_hook(self) -> CustomJobAsyncHook: return CustomJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain, )
async def _wait_job(self) -> types.TrainingPipeline: pipeline: types.TrainingPipeline = await self.async_hook.wait_for_training_pipeline( project_id=self.project_id, location=self.location, pipeline_id=self.job_id, poll_interval=self.poll_interval, ) return pipeline
[docs]class CustomPythonPackageTrainingJobTrigger(BaseVertexAIJobTrigger): """ Make async calls to Vertex AI to check the state of a running custom python package training job. Return the job when it enters a completed state. """
[docs] job_type_verbose_name = "Custom Python Package Training Job"
[docs] job_serializer_class = types.TrainingPipeline
[docs] statuses_success = { PipelineState.PIPELINE_STATE_PAUSED, PipelineState.PIPELINE_STATE_SUCCEEDED, }
@cached_property
[docs] def async_hook(self) -> CustomJobAsyncHook: return CustomJobAsyncHook( gcp_conn_id=self.conn_id, impersonation_chain=self.impersonation_chain, )
async def _wait_job(self) -> types.TrainingPipeline: pipeline: types.TrainingPipeline = await self.async_hook.wait_for_training_pipeline( project_id=self.project_id, location=self.location, pipeline_id=self.job_id, poll_interval=self.poll_interval, ) return pipeline

Was this entry helpful?