tests.system.providers.google.cloud.ml_engine.example_mlengine

Example Airflow DAG for Google ML Engine service.

Module Contents

tests.system.providers.google.cloud.ml_engine.example_mlengine.PROJECT_ID[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.ENV_ID[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.DAG_ID = 'gcp_mlengine'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.REGION = 'us-central1'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.PACKAGE_DISPLAY_NAME[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.MODEL_DISPLAY_NAME[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.JOB_DISPLAY_NAME[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.RESOURCE_DATA_BUCKET = 'airflow-system-tests-resources'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.CUSTOM_PYTHON_GCS_BUCKET_NAME[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.BQ_SOURCE = 'bq://bigquery-public-data.ml_datasets.penguins'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.TABULAR_DATASET[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.REPLICA_COUNT = 1[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.MACHINE_TYPE = 'n1-standard-4'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.ACCELERATOR_TYPE = 'ACCELERATOR_TYPE_UNSPECIFIED'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.ACCELERATOR_COUNT = 0[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.TRAINING_FRACTION_SPLIT = 0.7[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.TEST_FRACTION_SPLIT = 0.15[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.VALIDATION_FRACTION_SPLIT = 0.15[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.PYTHON_PACKAGE_GCS_URI[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.PYTHON_MODULE_NAME = 'penguins_trainer_script.task'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.TRAIN_IMAGE = 'us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-8:latest'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.DEPLOY_IMAGE = 'us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-8:latest'[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.create_bucket[source]
tests.system.providers.google.cloud.ml_engine.example_mlengine.test_run[source]

Was this entry helpful?