tests.system.providers.google.cloud.ml_engine.example_mlengine
¶
Example Airflow DAG for Google ML Engine service.
Module Contents¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.RESOURCE_DATA_BUCKET = 'airflow-system-tests-resources'[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.CUSTOM_PYTHON_GCS_BUCKET_NAME[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.BQ_SOURCE = 'bq://bigquery-public-data.ml_datasets.penguins'[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.MACHINE_TYPE = 'n1-standard-4'[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.ACCELERATOR_TYPE = 'ACCELERATOR_TYPE_UNSPECIFIED'[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.TRAINING_FRACTION_SPLIT = 0.7[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.VALIDATION_FRACTION_SPLIT = 0.15[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.PYTHON_MODULE_NAME = 'penguins_trainer_script.task'[source]¶
- tests.system.providers.google.cloud.ml_engine.example_mlengine.TRAIN_IMAGE = 'us-docker.pkg.dev/vertex-ai/training/tf-cpu.2-8:latest'[source]¶