# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG for Dataproc batch operators.
"""
from __future__ import annotations
import os
from datetime import datetime
from google.api_core.retry import Retry
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataproc import (
DataprocCancelOperationOperator,
DataprocCreateBatchOperator,
DataprocDeleteBatchOperator,
DataprocGetBatchOperator,
DataprocListBatchesOperator,
)
from airflow.providers.google.cloud.sensors.dataproc import DataprocBatchSensor
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]DAG_ID = "dataproc_batch"
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT")
[docs]BATCH_ID = f"batch-{ENV_ID}-{DAG_ID}".replace("_", "-")
[docs]BATCH_ID_2 = f"batch-{ENV_ID}-{DAG_ID}-2".replace("_", "-")
[docs]BATCH_ID_3 = f"batch-{ENV_ID}-{DAG_ID}-3".replace("_", "-")
[docs]BATCH_ID_4 = f"batch-{ENV_ID}-{DAG_ID}-4".replace("_", "-")
[docs]BATCH_CONFIG = {
"spark_batch": {
"jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
"main_class": "org.apache.spark.examples.SparkPi",
},
}
with DAG(
DAG_ID,
schedule="@once",
start_date=datetime(2021, 1, 1),
catchup=False,
tags=["example", "dataproc"],
) as dag:
# [START how_to_cloud_dataproc_create_batch_operator]
[docs] create_batch = DataprocCreateBatchOperator(
task_id="create_batch",
project_id=PROJECT_ID,
region=REGION,
batch=BATCH_CONFIG,
batch_id=BATCH_ID,
)
create_batch_2 = DataprocCreateBatchOperator(
task_id="create_batch_2",
project_id=PROJECT_ID,
region=REGION,
batch=BATCH_CONFIG,
batch_id=BATCH_ID_2,
result_retry=Retry(maximum=10.0, initial=10.0, multiplier=1.0),
)
create_batch_3 = DataprocCreateBatchOperator(
task_id="create_batch_3",
project_id=PROJECT_ID,
region=REGION,
batch=BATCH_CONFIG,
batch_id=BATCH_ID_3,
asynchronous=True,
)
# [END how_to_cloud_dataproc_create_batch_operator]
# [START how_to_cloud_dataproc_batch_async_sensor]
batch_async_sensor = DataprocBatchSensor(
task_id="batch_async_sensor",
region=REGION,
project_id=PROJECT_ID,
batch_id=BATCH_ID_3,
poke_interval=10,
)
# [END how_to_cloud_dataproc_batch_async_sensor]
# [START how_to_cloud_dataproc_get_batch_operator]
get_batch = DataprocGetBatchOperator(
task_id="get_batch", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID
)
get_batch_2 = DataprocGetBatchOperator(
task_id="get_batch_2", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID_2
)
# [END how_to_cloud_dataproc_get_batch_operator]
# [START how_to_cloud_dataproc_list_batches_operator]
list_batches = DataprocListBatchesOperator(
task_id="list_batches",
project_id=PROJECT_ID,
region=REGION,
)
# [END how_to_cloud_dataproc_list_batches_operator]
create_batch_4 = DataprocCreateBatchOperator(
task_id="create_batch_4",
project_id=PROJECT_ID,
region=REGION,
batch=BATCH_CONFIG,
batch_id=BATCH_ID_4,
asynchronous=True,
)
# [START how_to_cloud_dataproc_cancel_operation_operator]
cancel_operation = DataprocCancelOperationOperator(
task_id="cancel_operation",
project_id=PROJECT_ID,
region=REGION,
operation_name="{{ task_instance.xcom_pull('create_batch_4') }}",
)
# [END how_to_cloud_dataproc_cancel_operation_operator]
# [START how_to_cloud_dataproc_delete_batch_operator]
delete_batch = DataprocDeleteBatchOperator(
task_id="delete_batch", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID
)
delete_batch_2 = DataprocDeleteBatchOperator(
task_id="delete_batch_2", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID_2
)
delete_batch_3 = DataprocDeleteBatchOperator(
task_id="delete_batch_3", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID_3
)
delete_batch_4 = DataprocDeleteBatchOperator(
task_id="delete_batch_4", project_id=PROJECT_ID, region=REGION, batch_id=BATCH_ID_4
)
# [END how_to_cloud_dataproc_delete_batch_operator]
delete_batch.trigger_rule = TriggerRule.ALL_DONE
delete_batch_2.trigger_rule = TriggerRule.ALL_DONE
delete_batch_3.trigger_rule = TriggerRule.ALL_DONE
delete_batch_4.trigger_rule = TriggerRule.ALL_DONE
(
# TEST SETUP
[create_batch, create_batch_2, create_batch_3]
# TEST BODY
>> batch_async_sensor
>> [get_batch, get_batch_2, list_batches]
>> create_batch_4
>> cancel_operation
# TEST TEARDOWN
>> [delete_batch, delete_batch_2, delete_batch_3, delete_batch_4]
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "teardown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)