# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that shows how to use Dataplex.
"""
from __future__ import annotations
import datetime
import os
from airflow.models.baseoperator import chain
from airflow.models.dag import DAG
from airflow.providers.google.cloud.operators.dataplex import (
DataplexCreateLakeOperator,
DataplexCreateTaskOperator,
DataplexDeleteLakeOperator,
DataplexDeleteTaskOperator,
DataplexGetTaskOperator,
DataplexListTasksOperator,
)
from airflow.providers.google.cloud.operators.gcs import (
GCSCreateBucketOperator,
GCSDeleteBucketOperator,
GCSSynchronizeBucketsOperator,
)
from airflow.providers.google.cloud.sensors.dataplex import DataplexTaskStateSensor
from airflow.utils.trigger_rule import TriggerRule
[docs]ENV_ID = os.environ.get("SYSTEM_TESTS_ENV_ID")
[docs]PROJECT_ID = os.environ.get("SYSTEM_TESTS_GCP_PROJECT")
[docs]DAG_ID = "example_dataplex"
[docs]BUCKET_NAME = f"bucket_{DAG_ID}_{ENV_ID}"
[docs]SPARK_FILE_NAME = "spark_example_pi.py"
[docs]RESOURCE_DATA_BUCKET = "airflow-system-tests-resources"
[docs]LAKE_ID = f"test-lake-dataplex-{ENV_ID}"
[docs]SERVICE_ACC = f"{PROJECT_ID}@appspot.gserviceaccount.com"
[docs]SPARK_FILE_FULL_PATH = f"gs://{BUCKET_NAME}/{SPARK_FILE_NAME}"
[docs]DATAPLEX_TASK_ID = f"test-task-{ENV_ID}"
[docs]TRIGGER_SPEC_TYPE = "ON_DEMAND"
# [START howto_dataplex_configuration]
[docs]EXAMPLE_TASK_BODY = {
"trigger_spec": {"type_": TRIGGER_SPEC_TYPE},
"execution_spec": {"service_account": SERVICE_ACC},
"spark": {"python_script_file": SPARK_FILE_FULL_PATH},
}
# [END howto_dataplex_configuration]
# [START howto_dataplex_lake_configuration]
[docs]EXAMPLE_LAKE_BODY = {
"display_name": "test_display_name",
"labels": [],
"description": "test_description",
"metastore": {"service": ""},
}
# [END howto_dataplex_lake_configuration]
with DAG(
DAG_ID,
start_date=datetime.datetime(2021, 1, 1),
schedule="@once",
tags=["example", "dataplex"],
) as dag:
[docs] create_bucket = GCSCreateBucketOperator(
task_id="create_bucket", bucket_name=BUCKET_NAME, project_id=PROJECT_ID
)
sync_bucket = GCSSynchronizeBucketsOperator(
task_id="sync_bucket",
source_bucket=RESOURCE_DATA_BUCKET,
source_object=SPARK_FILE_NAME,
destination_bucket=BUCKET_NAME,
destination_object=SPARK_FILE_NAME,
recursive=True,
)
# [START howto_dataplex_create_lake_operator]
create_lake = DataplexCreateLakeOperator(
project_id=PROJECT_ID, region=REGION, body=EXAMPLE_LAKE_BODY, lake_id=LAKE_ID, task_id="create_lake"
)
# [END howto_dataplex_create_lake_operator]
# [START howto_dataplex_create_task_operator]
create_dataplex_task = DataplexCreateTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
body=EXAMPLE_TASK_BODY,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="create_dataplex_task",
)
# [END howto_dataplex_create_task_operator]
# [START howto_dataplex_async_create_task_operator]
create_dataplex_task_async = DataplexCreateTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
body=EXAMPLE_TASK_BODY,
dataplex_task_id=f"{DATAPLEX_TASK_ID}-1",
asynchronous=True,
task_id="create_dataplex_task_async",
)
# [END howto_dataplex_async_create_task_operator]
# [START howto_dataplex_delete_task_operator]
delete_dataplex_task_async = DataplexDeleteTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=f"{DATAPLEX_TASK_ID}-1",
task_id="delete_dataplex_task_async",
)
# [END howto_dataplex_delete_task_operator]
# [START howto_dataplex_list_tasks_operator]
list_dataplex_task = DataplexListTasksOperator(
project_id=PROJECT_ID, region=REGION, lake_id=LAKE_ID, task_id="list_dataplex_task"
)
# [END howto_dataplex_list_tasks_operator]
# [START howto_dataplex_get_task_operator]
get_dataplex_task = DataplexGetTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="get_dataplex_task",
)
# [END howto_dataplex_get_task_operator]
# [START howto_dataplex_task_state_sensor]
dataplex_task_state = DataplexTaskStateSensor(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="dataplex_task_state",
)
# [END howto_dataplex_task_state_sensor]
# [START howto_dataplex_delete_task_operator]
delete_dataplex_task = DataplexDeleteTaskOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
dataplex_task_id=DATAPLEX_TASK_ID,
task_id="delete_dataplex_task",
trigger_rule=TriggerRule.ALL_DONE,
)
# [END howto_dataplex_delete_task_operator]
# [START howto_dataplex_delete_lake_operator]
delete_lake = DataplexDeleteLakeOperator(
project_id=PROJECT_ID,
region=REGION,
lake_id=LAKE_ID,
task_id="delete_lake",
trigger_rule=TriggerRule.ALL_DONE,
)
# [END howto_dataplex_delete_lake_operator]
delete_bucket = GCSDeleteBucketOperator(
task_id="delete_bucket", bucket_name=BUCKET_NAME, trigger_rule=TriggerRule.ALL_DONE
)
chain(
# TEST SETUP
create_bucket,
sync_bucket,
# TEST BODY
create_lake,
create_dataplex_task,
get_dataplex_task,
list_dataplex_task,
create_dataplex_task_async,
delete_dataplex_task_async,
dataplex_task_state,
# TEST TEARDOWN
delete_dataplex_task,
delete_lake,
delete_bucket,
)
from tests.system.utils.watcher import watcher
# This test needs watcher in order to properly mark success/failure
# when "tearDown" task with trigger rule is part of the DAG
list(dag.tasks) >> watcher()
from tests.system.utils import get_test_run # noqa: E402
# Needed to run the example DAG with pytest (see: tests/system/README.md#run_via_pytest)
[docs]test_run = get_test_run(dag)