DatabricksSubmitRunOperator¶
Use the DatabricksSubmitRunOperator
to submit
a new Databricks job via Databricks api/2.1/jobs/runs/submit API endpoint.
Using the Operator¶
There are two ways to instantiate this operator. In the first way, you can take the JSON payload that you typically use
to call the api/2.1/jobs/runs/submit
endpoint and pass it directly to our DatabricksSubmitRunOperator
through the json
parameter.
Another way to accomplish the same thing is to use the named parameters of the DatabricksSubmitRunOperator
directly. Note that there is exactly
one named parameter for each top level parameter in the runs/submit
endpoint.
Parameter |
Input |
---|---|
spark_jar_task: dict |
main class and parameters for the JAR task |
notebook_task: dict |
notebook path and parameters for the task |
spark_python_task: dict |
python file path and parameters to run the python file with |
spark_submit_task: dict |
parameters needed to run a spark-submit command |
pipeline_task: dict |
parameters needed to run a Delta Live Tables pipeline |
new_cluster: dict |
specs for a new cluster on which this task will be run |
existing_cluster_id: string |
ID for existing cluster on which to run this task |
libraries: list of dict |
libraries which this run will use |
run_name: string |
run name used for this task |
timeout_seconds: integer |
The timeout for this run |
databricks_conn_id: string |
the name of the Airflow connection to use |
polling_period_seconds: integer |
controls the rate which we poll for the result of this run |
databricks_retry_limit: integer |
amount of times retry if the Databricks backend is unreachable |
databricks_retry_delay: decimal |
number of seconds to wait between retries |
databricks_retry_args: dict |
An optional dictionary with arguments passed to |
do_xcom_push: boolean |
whether we should push run_id and run_page_url to xcom |
Examples¶
Specifying parameters as JSON¶
An example usage of the DatabricksSubmitRunOperator is as follows:
# Example of using the JSON parameter to initialize the operator.
new_cluster = {
'spark_version': '9.1.x-scala2.12',
'node_type_id': 'r3.xlarge',
'aws_attributes': {'availability': 'ON_DEMAND'},
'num_workers': 8,
}
notebook_task_params = {
'new_cluster': new_cluster,
'notebook_task': {
'notebook_path': '/Users/airflow@example.com/PrepareData',
},
}
notebook_task = DatabricksSubmitRunOperator(task_id='notebook_task', json=notebook_task_params)
Using named parameters¶
You can also use named parameters to initialize the operator and run the job.
# Example of using the named parameters of DatabricksSubmitRunOperator
# to initialize the operator.
spark_jar_task = DatabricksSubmitRunOperator(
task_id='spark_jar_task',
new_cluster=new_cluster,
spark_jar_task={'main_class_name': 'com.example.ProcessData'},
libraries=[{'jar': 'dbfs:/lib/etl-0.1.jar'}],
)