DatabricksSubmitRunOperator¶
Use the DatabricksSubmitRunOperator
to submit
a new Databricks job via Databricks api/2.1/jobs/runs/submit API endpoint.
Using the Operator¶
There are two ways to instantiate this operator. In the first way, you can take the JSON payload that you typically use
to call the api/2.1/jobs/runs/submit
endpoint and pass it directly to our DatabricksSubmitRunOperator
through the
json
parameter. With this approach you get full control over the underlying payload to Jobs REST API, including
execution of Databricks jobs with multiple tasks, but it’s harder to detect errors because of the lack of the type checking.
Another way to accomplish the same thing is to use the named parameters of the DatabricksSubmitRunOperator
directly. Note that there is exactly
one named parameter for each top level parameter in the runs/submit
endpoint. When using named parameters you must to specify following:
Task specification - it should be one of:
spark_jar_task
- main class and parameters for the JAR tasknotebook_task
- notebook path and parameters for the taskspark_python_task
- python file path and parameters to run the python file withspark_submit_task
- parameters needed to run aspark-submit
commandpipeline_task
- parameters needed to run a Delta Live Tables pipeline
Cluster specification - it should be one of: *
new_cluster
- specs for a new cluster on which this task will be run *existing_cluster_id
- ID for existing cluster on which to run this task
All other parameters are optional, and described in the documentation of the DatabricksSubmitRunOperator
class.
Examples¶
Specifying parameters as JSON¶
An example usage of the DatabricksSubmitRunOperator is as follows:
# Example of using the JSON parameter to initialize the operator.
new_cluster = {
'spark_version': '9.1.x-scala2.12',
'node_type_id': 'r3.xlarge',
'aws_attributes': {'availability': 'ON_DEMAND'},
'num_workers': 8,
}
notebook_task_params = {
'new_cluster': new_cluster,
'notebook_task': {
'notebook_path': '/Users/airflow@example.com/PrepareData',
},
}
notebook_task = DatabricksSubmitRunOperator(task_id='notebook_task', json=notebook_task_params)
Using named parameters¶
You can also use named parameters to initialize the operator and run the job.
# Example of using the named parameters of DatabricksSubmitRunOperator
# to initialize the operator.
spark_jar_task = DatabricksSubmitRunOperator(
task_id='spark_jar_task',
new_cluster=new_cluster,
spark_jar_task={'main_class_name': 'com.example.ProcessData'},
libraries=[{'jar': 'dbfs:/lib/etl-0.1.jar'}],
)
DatabricksSubmitRunDeferrableOperator¶
Deferrable version of the DatabricksSubmitRunOperator
operator.
It allows to utilize Airflow workers more effectively using new functionality introduced in Airflow 2.2.0