Amazon Redshift Operators

Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers.

Airflow provides operators to manage your Redshift clusters.

Prerequisite Tasks

To use these operators, you must do a few things:

Manage Amazon Redshift Clusters

Amazon Redshift Cluster Sensor

To check the state of an Amazon Redshift Cluster until it reaches the target state or another terminal state you can use RedshiftClusterSensor.

airflow/providers/amazon/aws/example_dags/example_redshift_cluster.py[source]

task_wait_cluster_available = RedshiftClusterSensor(
    task_id='sensor_redshift_cluster_available',
    cluster_identifier=REDSHIFT_CLUSTER_IDENTIFIER,
    target_status='available',
    poke_interval=5,
    timeout=60 * 15,
)

Resume an Amazon Redshift Cluster

To resume a ‘paused’ Amazon Redshift Cluster you can use RedshiftResumeClusterOperator

airflow/providers/amazon/aws/example_dags/example_redshift_cluster.py[source]

task_resume_cluster = RedshiftResumeClusterOperator(
    task_id='redshift_resume_cluster',
    cluster_identifier=REDSHIFT_CLUSTER_IDENTIFIER,
)

Pause an Amazon Redshift Cluster

To pause an ‘available’ Amazon Redshift Cluster you can use RedshiftPauseClusterOperator

airflow/providers/amazon/aws/example_dags/example_redshift_cluster.py[source]

task_pause_cluster = RedshiftPauseClusterOperator(
    task_id='redshift_pause_cluster',
    cluster_identifier=REDSHIFT_CLUSTER_IDENTIFIER,
)

Was this entry helpful?