Source code for airflow.providers.amazon.aws.sensors.sagemaker_training

#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import time
from typing import Optional

from airflow.providers.amazon.aws.hooks.sagemaker import LogState, SageMakerHook
from airflow.providers.amazon.aws.sensors.sagemaker_base import SageMakerBaseSensor
from airflow.utils.decorators import apply_defaults


[docs]class SageMakerTrainingSensor(SageMakerBaseSensor): """ Asks for the state of the training state until it reaches a terminal state. If it fails the sensor errors, failing the task. :param job_name: name of the SageMaker training job to check the state of :type job_name: str :param print_log: if the operator should print the cloudwatch log :type print_log: bool """
[docs] template_fields = ['job_name']
[docs] template_ext = ()
@apply_defaults def __init__(self, *, job_name, print_log=True, **kwargs): super().__init__(**kwargs) self.job_name = job_name self.print_log = print_log self.positions = {} self.stream_names = [] self.instance_count: Optional[int] = None self.state: Optional[int] = None self.last_description = None self.last_describe_job_call = None self.log_resource_inited = False
[docs] def init_log_resource(self, hook: SageMakerHook) -> None: """Set tailing LogState for associated training job.""" description = hook.describe_training_job(self.job_name) self.instance_count = description['ResourceConfig']['InstanceCount'] status = description['TrainingJobStatus'] job_already_completed = status not in self.non_terminal_states() self.state = LogState.TAILING if not job_already_completed else LogState.COMPLETE self.last_description = description self.last_describe_job_call = time.monotonic() self.log_resource_inited = True
[docs] def non_terminal_states(self): return SageMakerHook.non_terminal_states
[docs] def failed_states(self): return SageMakerHook.failed_states
[docs] def get_sagemaker_response(self): if self.print_log: if not self.log_resource_inited: self.init_log_resource(self.get_hook()) ( self.state, self.last_description, self.last_describe_job_call, ) = self.get_hook().describe_training_job_with_log( self.job_name, self.positions, self.stream_names, self.instance_count, self.state, self.last_description, self.last_describe_job_call, ) else: self.last_description = self.get_hook().describe_training_job(self.job_name) status = self.state_from_response(self.last_description) if status not in self.non_terminal_states() and status not in self.failed_states(): billable_time = ( self.last_description['TrainingEndTime'] - self.last_description['TrainingStartTime'] ) * self.last_description['ResourceConfig']['InstanceCount'] self.log.info('Billable seconds: %s', int(billable_time.total_seconds()) + 1) return self.last_description
[docs] def get_failed_reason_from_response(self, response): return response['FailureReason']
[docs] def state_from_response(self, response): return response['TrainingJobStatus']

Was this entry helpful?