airflow.providers.amazon.aws.sensors.sagemaker_training

Module Contents

class airflow.providers.amazon.aws.sensors.sagemaker_training.SageMakerTrainingSensor(*, job_name, print_log=True, **kwargs)[source]

Bases: airflow.providers.amazon.aws.sensors.sagemaker_base.SageMakerBaseSensor

Asks for the state of the training state until it reaches a terminal state. If it fails the sensor errors, failing the task.

Parameters
  • job_name (str) -- name of the SageMaker training job to check the state of

  • print_log (bool) -- if the operator should print the cloudwatch log

template_fields = ['job_name'][source]
template_ext = [][source]
init_log_resource(self, hook: SageMakerHook)[source]

Set tailing LogState for associated training job.

non_terminal_states(self)[source]
failed_states(self)[source]
get_sagemaker_response(self)[source]
get_failed_reason_from_response(self, response)[source]
state_from_response(self, response)[source]

Was this entry helpful?