Source code for airflow.sensors.date_time
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import datetime
from typing import TYPE_CHECKING, NoReturn, Sequence
from airflow.sensors.base import BaseSensorOperator
from airflow.triggers.temporal import DateTimeTrigger
from airflow.utils import timezone
if TYPE_CHECKING:
from airflow.utils.context import Context
[docs]class DateTimeSensor(BaseSensorOperator):
"""
Waits until the specified datetime.
A major advantage of this sensor is idempotence for the ``target_time``.
It handles some cases for which ``TimeSensor`` and ``TimeDeltaSensor`` are not suited.
**Example** 1 :
If a task needs to wait for 11am on each ``execution_date``. Using
``TimeSensor`` or ``TimeDeltaSensor``, all backfill tasks started at
1am have to wait for 10 hours. This is unnecessary, e.g. a backfill
task with ``{{ ds }} = '1970-01-01'`` does not need to wait because
``1970-01-01T11:00:00`` has already passed.
**Example** 2 :
If a DAG is scheduled to run at 23:00 daily, but one of the tasks is
required to run at 01:00 next day, using ``TimeSensor`` will return
``True`` immediately because 23:00 > 01:00. Instead, we can do this:
.. code-block:: python
DateTimeSensor(
task_id="wait_for_0100",
target_time="{{ next_execution_date.tomorrow().replace(hour=1) }}",
)
:param target_time: datetime after which the job succeeds. (templated)
"""
[docs] template_fields: Sequence[str] = ("target_time",)
def __init__(self, *, target_time: str | datetime.datetime, **kwargs) -> None:
super().__init__(**kwargs)
# self.target_time can't be a datetime object as it is a template_field
if isinstance(target_time, datetime.datetime):
self.target_time = target_time.isoformat()
elif isinstance(target_time, str):
self.target_time = target_time
else:
raise TypeError(
f"Expected str or datetime.datetime type for target_time. Got {type(target_time)}"
)
[docs] def poke(self, context: Context) -> bool:
self.log.info("Checking if the time (%s) has come", self.target_time)
return timezone.utcnow() > timezone.parse(self.target_time)
[docs]class DateTimeSensorAsync(DateTimeSensor):
"""
Wait until the specified datetime occurs.
Deferring itself to avoid taking up a worker slot while it is waiting.
It is a drop-in replacement for DateTimeSensor.
:param target_time: datetime after which the job succeeds. (templated)
"""
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
[docs] def execute(self, context: Context) -> NoReturn:
trigger = DateTimeTrigger(moment=timezone.parse(self.target_time))
self.defer(
trigger=trigger,
method_name="execute_complete",
)
[docs] def execute_complete(self, context, event=None) -> None:
"""Execute when the trigger fires - returns immediately."""
return None