## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License.from__future__importannotationsimportcollections.abcimportcontextlibimporthashlibimportitertoolsimportloggingimportmathimportoperatorimportosimportsignalimportwarningsfromcollectionsimportdefaultdictfromdatetimeimporttimedeltafromenumimportEnumfromtypingimportTYPE_CHECKING,Any,Callable,Collection,Generator,Iterable,Mapping,Tuplefromurllib.parseimportquoteimportdillimportjinja2importlazy_object_proxyimportpendulumfromjinja2importTemplateAssertionError,UndefinedErrorfromsqlalchemyimport(Column,DateTime,Float,ForeignKey,ForeignKeyConstraint,Index,Integer,PrimaryKeyConstraint,String,Text,and_,delete,false,func,inspect,or_,text,update,)fromsqlalchemy.ext.associationproxyimportassociation_proxyfromsqlalchemy.ext.mutableimportMutableDictfromsqlalchemy.ormimportreconstructor,relationshipfromsqlalchemy.orm.attributesimportNO_VALUE,set_committed_valuefromsqlalchemy.sql.expressionimportcase,selectfromairflowimportsettingsfromairflow.api_internal.internal_api_callimportinternal_api_callfromairflow.compat.functoolsimportcachefromairflow.configurationimportconffromairflow.datasetsimportDatasetfromairflow.datasets.managerimportdataset_managerfromairflow.exceptionsimport(AirflowException,AirflowFailException,AirflowRescheduleException,AirflowSensorTimeout,AirflowSkipException,AirflowTaskTerminated,AirflowTaskTimeout,DagRunNotFound,RemovedInAirflow3Warning,TaskDeferred,UnmappableXComLengthPushed,UnmappableXComTypePushed,XComForMappingNotPushed,)fromairflow.listeners.listenerimportget_listener_managerfromairflow.models.baseimportBase,StringID,TaskInstanceDependencies,_sentinelfromairflow.models.dagbagimportDagBagfromairflow.models.logimportLogfromairflow.models.mappedoperatorimportMappedOperatorfromairflow.models.paramimportprocess_paramsfromairflow.models.taskfailimportTaskFailfromairflow.models.taskinstancekeyimportTaskInstanceKeyfromairflow.models.taskmapimportTaskMapfromairflow.models.taskrescheduleimportTaskReschedulefromairflow.models.xcomimportLazyXComAccess,XComfromairflow.plugins_managerimportintegrate_macros_pluginsfromairflow.sentryimportSentryfromairflow.settingsimporttask_instance_mutation_hookfromairflow.statsimportStatsfromairflow.templatesimportSandboxedEnvironmentfromairflow.ti_deps.dep_contextimportDepContextfromairflow.ti_deps.dependencies_depsimportREQUEUEABLE_DEPS,RUNNING_DEPSfromairflow.utilsimporttimezonefromairflow.utils.contextimportConnectionAccessor,Context,VariableAccessor,context_mergefromairflow.utils.emailimportsend_emailfromairflow.utils.helpersimportprune_dict,render_template_to_stringfromairflow.utils.log.logging_mixinimportLoggingMixinfromairflow.utils.module_loadingimportqualnamefromairflow.utils.netimportget_hostnamefromairflow.utils.operator_helpersimportcontext_to_airflow_varsfromairflow.utils.platformimportgetuserfromairflow.utils.retriesimportrun_with_db_retriesfromairflow.utils.sessionimportNEW_SESSION,create_session,provide_sessionfromairflow.utils.sqlalchemyimport(ExecutorConfigType,ExtendedJSON,UtcDateTime,tuple_in_condition,with_row_locks,)fromairflow.utils.stateimportDagRunState,JobState,State,TaskInstanceStatefromairflow.utils.task_groupimportMappedTaskGroupfromairflow.utils.task_instance_sessionimportset_current_task_instance_sessionfromairflow.utils.timeoutimporttimeoutfromairflow.utils.xcomimportXCOM_RETURN_KEY
ifTYPE_CHECKING:fromdatetimeimportdatetimefrompathlibimportPurePathfromtypesimportTracebackTypefromsqlalchemy.orm.sessionimportSessionfromsqlalchemy.sql.elementsimportBooleanClauseListfromsqlalchemy.sql.expressionimportColumnOperatorsfromairflow.models.abstractoperatorimportTaskStateChangeCallbackfromairflow.models.baseoperatorimportBaseOperatorfromairflow.models.dagimportDAG,DagModelfromairflow.models.dagrunimportDagRunfromairflow.models.datasetimportDatasetEventfromairflow.models.operatorimportOperatorfromairflow.serialization.pydantic.dagimportDagModelPydanticfromairflow.serialization.pydantic.datasetimportDatasetEventPydanticfromairflow.serialization.pydantic.taskinstanceimportTaskInstancePydanticfromairflow.timetables.baseimportDataIntervalfromairflow.typing_compatimportLiteral,TypeGuardfromairflow.utils.task_groupimportTaskGroup# This is a workaround because mypy doesn't work with hybrid_property# TODO: remove this hack and move hybrid_property back to main import block# See https://github.com/python/mypy/issues/4430
classTaskReturnCode(Enum):""" Enum to signal manner of exit for task run command. :meta private: """DEFERRED=100"""When task exits with deferral to trigger."""@contextlib.contextmanager
[docs]defset_current_context(context:Context)->Generator[Context,None,None]:""" Set the current execution context to the provided context object. This method should be called once per Task execution, before calling operator.execute. """_CURRENT_CONTEXT.append(context)try:yieldcontextfinally:expected_state=_CURRENT_CONTEXT.pop()ifexpected_state!=context:log.warning("Current context is not equal to the state at context stack. Expected=%s, got=%s",context,expected_state,)
def_stop_remaining_tasks(*,task_instance:TaskInstance|TaskInstancePydantic,session:Session):""" Stop non-teardown tasks in dag. :meta private: """ifnottask_instance.dag_run:raiseValueError("``task_instance`` must have ``dag_run`` set")tis=task_instance.dag_run.get_task_instances(session=session)ifTYPE_CHECKING:asserttask_instance.taskassertisinstance(task_instance.task.dag,DAG)fortiintis:ifti.task_id==task_instance.task_idorti.statein(TaskInstanceState.SUCCESS,TaskInstanceState.FAILED,):continuetask=task_instance.task.dag.task_dict[ti.task_id]ifnottask.is_teardown:ifti.state==TaskInstanceState.RUNNING:log.info("Forcing task %s to fail due to dag's `fail_stop` setting",ti.task_id)ti.error(session)else:log.info("Setting task %s to SKIPPED due to dag's `fail_stop` setting.",ti.task_id)ti.set_state(state=TaskInstanceState.SKIPPED,session=session)else:log.info("Not skipping teardown task '%s'",ti.task_id)
[docs]defclear_task_instances(tis:list[TaskInstance],session:Session,activate_dag_runs:None=None,dag:DAG|None=None,dag_run_state:DagRunState|Literal[False]=DagRunState.QUEUED,)->None:""" Clear a set of task instances, but make sure the running ones get killed. Also sets Dagrun's `state` to QUEUED and `start_date` to the time of execution. But only for finished DRs (SUCCESS and FAILED). Doesn't clear DR's `state` and `start_date`for running DRs (QUEUED and RUNNING) because clearing the state for already running DR is redundant and clearing `start_date` affects DR's duration. :param tis: a list of task instances :param session: current session :param dag_run_state: state to set finished DagRuns to. If set to False, DagRuns state will not be changed. :param dag: DAG object :param activate_dag_runs: Deprecated parameter, do not pass """job_ids=[]# Keys: dag_id -> run_id -> map_indexes -> try_numbers -> task_idtask_id_by_key:dict[str,dict[str,dict[int,dict[int,set[str]]]]]=defaultdict(lambda:defaultdict(lambda:defaultdict(lambda:defaultdict(set))))dag_bag=DagBag(read_dags_from_db=True)fortiintis:ifti.state==TaskInstanceState.RUNNING:ifti.job_id:# If a task is cleared when running, set its state to RESTARTING so that# the task is terminated and becomes eligible for retry.ti.state=TaskInstanceState.RESTARTINGjob_ids.append(ti.job_id)else:ti_dag=dagifdaganddag.dag_id==ti.dag_idelsedag_bag.get_dag(ti.dag_id,session=session)task_id=ti.task_idifti_dagandti_dag.has_task(task_id):task=ti_dag.get_task(task_id)ti.refresh_from_task(task)ifTYPE_CHECKING:assertti.tasktask_retries=task.retriesti.max_tries=ti.try_number+task_retries-1else:# Ignore errors when updating max_tries if the DAG or# task are not found since database records could be# outdated. We make max_tries the maximum value of its# original max_tries or the last attempted try number.ti.max_tries=max(ti.max_tries,ti.prev_attempted_tries)ti.state=Noneti.external_executor_id=Noneti.clear_next_method_args()session.merge(ti)task_id_by_key[ti.dag_id][ti.run_id][ti.map_index][ti.try_number].add(ti.task_id)iftask_id_by_key:# Clear all reschedules related to the ti to clear# This is an optimization for the common case where all tis are for a small number# of dag_id, run_id, try_number, and map_index. Use a nested dict of dag_id,# run_id, try_number, map_index, and task_id to construct the where clause in a# hierarchical manner. This speeds up the delete statement by more than 40x for# large number of tis (50k+).conditions=or_(and_(TR.dag_id==dag_id,or_(and_(TR.run_id==run_id,or_(and_(TR.map_index==map_index,or_(and_(TR.try_number==try_number,TR.task_id.in_(task_ids))fortry_number,task_idsintask_tries.items()),)formap_index,task_triesinmap_indexes.items()),)forrun_id,map_indexesinrun_ids.items()),)fordag_id,run_idsintask_id_by_key.items())delete_qry=TR.__table__.delete().where(conditions)session.execute(delete_qry)ifjob_ids:fromairflow.jobs.jobimportJobsession.execute(update(Job).where(Job.id.in_(job_ids)).values(state=JobState.RESTARTING))ifactivate_dag_runsisnotNone:warnings.warn("`activate_dag_runs` parameter to clear_task_instances function is deprecated. ""Please use `dag_run_state`",RemovedInAirflow3Warning,stacklevel=2,)ifnotactivate_dag_runs:dag_run_state=Falseifdag_run_stateisnotFalseandtis:fromairflow.models.dagrunimportDagRun# Avoid circular importrun_ids_by_dag_id=defaultdict(set)forinstanceintis:run_ids_by_dag_id[instance.dag_id].add(instance.run_id)drs=(session.query(DagRun).filter(or_(and_(DagRun.dag_id==dag_id,DagRun.run_id.in_(run_ids))fordag_id,run_idsinrun_ids_by_dag_id.items())).all())dag_run_state=DagRunState(dag_run_state)# Validate the state value.fordrindrs:ifdr.stateinState.finished_dr_states:dr.state=dag_run_statedr.start_date=timezone.utcnow()ifdag_run_state==DagRunState.QUEUED:dr.last_scheduling_decision=Nonedr.start_date=Nonedr.clear_number+=1session.flush()
def_is_mappable_value(value:Any)->TypeGuard[Collection]:"""Whether a value can be used for task mapping. We only allow collections with guaranteed ordering, but exclude character sequences since that's usually not what users would expect to be mappable. """ifnotisinstance(value,(collections.abc.Sequence,dict)):returnFalseifisinstance(value,(bytearray,bytes,str)):returnFalsereturnTruedef_creator_note(val):"""Creator the ``note`` association proxy."""ifisinstance(val,str):returnTaskInstanceNote(content=val)elifisinstance(val,dict):returnTaskInstanceNote(**val)else:returnTaskInstanceNote(*val)def_execute_task(task_instance:TaskInstance|TaskInstancePydantic,context:Context,task_orig:Operator):""" Execute Task (optionally with a Timeout) and push Xcom results. :param task_instance: the task instance :param context: Jinja2 context :param task_orig: origin task :meta private: """task_to_execute=task_instance.taskifTYPE_CHECKING:asserttask_to_executeifisinstance(task_to_execute,MappedOperator):raiseAirflowException("MappedOperator cannot be executed.")# If the task has been deferred and is being executed due to a trigger,# then we need to pick the right method to come back to, otherwise# we go for the default executeexecute_callable_kwargs:dict[str,Any]={}execute_callable:Callableiftask_instance.next_method:iftask_instance.next_method=="execute":ifnottask_instance.next_kwargs:task_instance.next_kwargs={}task_instance.next_kwargs[f"{task_to_execute.__class__.__name__}__sentinel"]=_sentinelexecute_callable=task_to_execute.resume_executionexecute_callable_kwargs["next_method"]=task_instance.next_methodexecute_callable_kwargs["next_kwargs"]=task_instance.next_kwargselse:execute_callable=task_to_execute.executeifexecute_callable.__name__=="execute":execute_callable_kwargs[f"{task_to_execute.__class__.__name__}__sentinel"]=_sentineldef_execute_callable(context,**execute_callable_kwargs):try:# Print a marker for log grouping of details before task executionlog.info("::endgroup::")returnexecute_callable(context=context,**execute_callable_kwargs)exceptSystemExitase:# Handle only successful cases here. Failure cases will be handled upper# in the exception chain.ife.codeisnotNoneande.code!=0:raisereturnNonefinally:# Print a marker post execution for internals of post task processinglog.info("::group::Post task execution logs")# If a timeout is specified for the task, make it fail# if it goes beyondiftask_to_execute.execution_timeout:# If we are coming in with a next_method (i.e. from a deferral),# calculate the timeout from our start_date.iftask_instance.next_methodandtask_instance.start_date:timeout_seconds=(task_to_execute.execution_timeout-(timezone.utcnow()-task_instance.start_date)).total_seconds()else:timeout_seconds=task_to_execute.execution_timeout.total_seconds()try:# It's possible we're already timed out, so fast-fail if trueiftimeout_seconds<=0:raiseAirflowTaskTimeout()# Run task in timeout wrapperwithtimeout(timeout_seconds):result=_execute_callable(context=context,**execute_callable_kwargs)exceptAirflowTaskTimeout:task_to_execute.on_kill()raiseelse:result=_execute_callable(context=context,**execute_callable_kwargs)withcreate_session()assession:iftask_to_execute.do_xcom_push:xcom_value=resultelse:xcom_value=Noneifxcom_valueisnotNone:# If the task returns a result, push an XCom containing it.iftask_to_execute.multiple_outputs:ifnotisinstance(xcom_value,Mapping):raiseAirflowException(f"Returned output was type {type(xcom_value)} ""expected dictionary for multiple_outputs")forkeyinxcom_value.keys():ifnotisinstance(key,str):raiseAirflowException("Returned dictionary keys must be strings when using "f"multiple_outputs, found {key} ({type(key)}) instead")forkey,valueinxcom_value.items():task_instance.xcom_push(key=key,value=value,session=session)task_instance.xcom_push(key=XCOM_RETURN_KEY,value=xcom_value,session=session)_record_task_map_for_downstreams(task_instance=task_instance,task=task_orig,value=xcom_value,session=session)returnresultdef_refresh_from_db(*,task_instance:TaskInstance|TaskInstancePydantic,session:Session,lock_for_update:bool=False)->None:""" Refresh the task instance from the database based on the primary key. :param task_instance: the task instance :param session: SQLAlchemy ORM Session :param lock_for_update: if True, indicates that the database should lock the TaskInstance (issuing a FOR UPDATE clause) until the session is committed. :meta private: """iftask_instanceinsession:session.refresh(task_instance,TaskInstance.__mapper__.column_attrs.keys())ti=TaskInstance.get_task_instance(dag_id=task_instance.dag_id,task_id=task_instance.task_id,run_id=task_instance.run_id,map_index=task_instance.map_index,select_columns=True,lock_for_update=lock_for_update,session=session,)ifti:# Fields ordered per model definitiontask_instance.start_date=ti.start_datetask_instance.end_date=ti.end_datetask_instance.duration=ti.durationtask_instance.state=ti.state# Since we selected columns, not the object, this is the raw valuetask_instance.try_number=ti.try_numbertask_instance.max_tries=ti.max_triestask_instance.hostname=ti.hostnametask_instance.unixname=ti.unixnametask_instance.job_id=ti.job_idtask_instance.pool=ti.pooltask_instance.pool_slots=ti.pool_slotsor1task_instance.queue=ti.queuetask_instance.priority_weight=ti.priority_weighttask_instance.operator=ti.operatortask_instance.custom_operator_name=ti.custom_operator_nametask_instance.queued_dttm=ti.queued_dttmtask_instance.queued_by_job_id=ti.queued_by_job_idtask_instance.pid=ti.pidtask_instance.executor_config=ti.executor_configtask_instance.external_executor_id=ti.external_executor_idtask_instance.trigger_id=ti.trigger_idtask_instance.next_method=ti.next_methodtask_instance.next_kwargs=ti.next_kwargselse:task_instance.state=Nonedef_set_duration(*,task_instance:TaskInstance|TaskInstancePydantic)->None:""" Set task instance duration. :param task_instance: the task instance :meta private: """iftask_instance.end_dateandtask_instance.start_date:task_instance.duration=(task_instance.end_date-task_instance.start_date).total_seconds()else:task_instance.duration=Nonelog.debug("Task Duration set to %s",task_instance.duration)def_stats_tags(*,task_instance:TaskInstance|TaskInstancePydantic)->dict[str,str]:""" Return task instance tags. :param task_instance: the task instance :meta private: """returnprune_dict({"dag_id":task_instance.dag_id,"task_id":task_instance.task_id})def_clear_next_method_args(*,task_instance:TaskInstance|TaskInstancePydantic)->None:""" Ensure we unset next_method and next_kwargs to ensure that any retries don't reuse them. :param task_instance: the task instance :meta private: """log.debug("Clearing next_method and next_kwargs.")task_instance.next_method=Nonetask_instance.next_kwargs=Nonedef_get_template_context(*,task_instance:TaskInstance|TaskInstancePydantic,session:Session|None=None,ignore_param_exceptions:bool=True,)->Context:""" Return TI Context. :param task_instance: the task instance :param session: SQLAlchemy ORM Session :param ignore_param_exceptions: flag to suppress value exceptions while initializing the ParamsDict :meta private: """# Do not use provide_session here -- it expunges everything on exit!ifnotsession:session=settings.Session()fromairflowimportmacrosfromairflow.models.abstractoperatorimportNotMappedintegrate_macros_plugins()task=task_instance.taskifTYPE_CHECKING:asserttaskasserttask.dagdag:DAG=task.dagdag_run=task_instance.get_dagrun(session)data_interval=dag.get_run_data_interval(dag_run)validated_params=process_params(dag,task,dag_run,suppress_exception=ignore_param_exceptions)logical_date:DateTime=timezone.coerce_datetime(task_instance.execution_date)ds=logical_date.strftime("%Y-%m-%d")ds_nodash=ds.replace("-","")ts=logical_date.isoformat()ts_nodash=logical_date.strftime("%Y%m%dT%H%M%S")ts_nodash_with_tz=ts.replace("-","").replace(":","")@cache# Prevent multiple database access.def_get_previous_dagrun_success()->DagRun|None:returntask_instance.get_previous_dagrun(state=DagRunState.SUCCESS,session=session)def_get_previous_dagrun_data_interval_success()->DataInterval|None:dagrun=_get_previous_dagrun_success()ifdagrunisNone:returnNonereturndag.get_run_data_interval(dagrun)defget_prev_data_interval_start_success()->pendulum.DateTime|None:data_interval=_get_previous_dagrun_data_interval_success()ifdata_intervalisNone:returnNonereturndata_interval.startdefget_prev_data_interval_end_success()->pendulum.DateTime|None:data_interval=_get_previous_dagrun_data_interval_success()ifdata_intervalisNone:returnNonereturndata_interval.enddefget_prev_start_date_success()->pendulum.DateTime|None:dagrun=_get_previous_dagrun_success()ifdagrunisNone:returnNonereturntimezone.coerce_datetime(dagrun.start_date)defget_prev_end_date_success()->pendulum.DateTime|None:dagrun=_get_previous_dagrun_success()ifdagrunisNone:returnNonereturntimezone.coerce_datetime(dagrun.end_date)@cachedefget_yesterday_ds()->str:return(logical_date-timedelta(1)).strftime("%Y-%m-%d")defget_yesterday_ds_nodash()->str:returnget_yesterday_ds().replace("-","")@cachedefget_tomorrow_ds()->str:return(logical_date+timedelta(1)).strftime("%Y-%m-%d")defget_tomorrow_ds_nodash()->str:returnget_tomorrow_ds().replace("-","")@cachedefget_next_execution_date()->pendulum.DateTime|None:# For manually triggered dagruns that aren't run on a schedule,# the "next" execution date doesn't make sense, and should be set# to execution date for consistency with how execution_date is set# for manually triggered tasks, i.e. triggered_date == execution_date.ifdag_run.external_trigger:returnlogical_dateifdagisNone:returnNonenext_info=dag.next_dagrun_info(data_interval,restricted=False)ifnext_infoisNone:returnNonereturntimezone.coerce_datetime(next_info.logical_date)defget_next_ds()->str|None:execution_date=get_next_execution_date()ifexecution_dateisNone:returnNonereturnexecution_date.strftime("%Y-%m-%d")defget_next_ds_nodash()->str|None:ds=get_next_ds()ifdsisNone:returndsreturnds.replace("-","")@cachedefget_prev_execution_date():# For manually triggered dagruns that aren't run on a schedule,# the "previous" execution date doesn't make sense, and should be set# to execution date for consistency with how execution_date is set# for manually triggered tasks, i.e. triggered_date == execution_date.ifdag_run.external_trigger:returnlogical_datewithwarnings.catch_warnings():warnings.simplefilter("ignore",RemovedInAirflow3Warning)returndag.previous_schedule(logical_date)@cachedefget_prev_ds()->str|None:execution_date=get_prev_execution_date()ifexecution_dateisNone:returnNonereturnexecution_date.strftime("%Y-%m-%d")defget_prev_ds_nodash()->str|None:prev_ds=get_prev_ds()ifprev_dsisNone:returnNonereturnprev_ds.replace("-","")defget_triggering_events()->dict[str,list[DatasetEvent|DatasetEventPydantic]]:ifTYPE_CHECKING:assertsessionisnotNone# The dag_run may not be attached to the session anymore since the# code base is over-zealous with use of session.expunge_all().# Re-attach it if we get called.nonlocaldag_runifdag_runnotinsession:dag_run=session.merge(dag_run,load=False)dataset_events=dag_run.consumed_dataset_eventstriggering_events:dict[str,list[DatasetEvent|DatasetEventPydantic]]=defaultdict(list)foreventindataset_events:ifevent.dataset:triggering_events[event.dataset.uri].append(event)returntriggering_eventstry:expanded_ti_count:int|None=task.get_mapped_ti_count(task_instance.run_id,session=session)exceptNotMapped:expanded_ti_count=None# NOTE: If you add to this dict, make sure to also update the following:# * Context in airflow/utils/context.pyi# * KNOWN_CONTEXT_KEYS in airflow/utils/context.py# * Table in docs/apache-airflow/templates-ref.rstcontext:dict[str,Any]={"conf":conf,"dag":dag,"dag_run":dag_run,"data_interval_end":timezone.coerce_datetime(data_interval.end),"data_interval_start":timezone.coerce_datetime(data_interval.start),"ds":ds,"ds_nodash":ds_nodash,"execution_date":logical_date,"expanded_ti_count":expanded_ti_count,"inlets":task.inlets,"logical_date":logical_date,"macros":macros,"map_index_template":task.map_index_template,"next_ds":get_next_ds(),"next_ds_nodash":get_next_ds_nodash(),"next_execution_date":get_next_execution_date(),"outlets":task.outlets,"params":validated_params,"prev_data_interval_start_success":get_prev_data_interval_start_success(),"prev_data_interval_end_success":get_prev_data_interval_end_success(),"prev_ds":get_prev_ds(),"prev_ds_nodash":get_prev_ds_nodash(),"prev_execution_date":get_prev_execution_date(),"prev_execution_date_success":task_instance.get_previous_execution_date(state=DagRunState.SUCCESS,session=session,),"prev_start_date_success":get_prev_start_date_success(),"prev_end_date_success":get_prev_end_date_success(),"run_id":task_instance.run_id,"task":task,"task_instance":task_instance,"task_instance_key_str":f"{task.dag_id}__{task.task_id}__{ds_nodash}","test_mode":task_instance.test_mode,"ti":task_instance,"tomorrow_ds":get_tomorrow_ds(),"tomorrow_ds_nodash":get_tomorrow_ds_nodash(),"triggering_dataset_events":lazy_object_proxy.Proxy(get_triggering_events),"ts":ts,"ts_nodash":ts_nodash,"ts_nodash_with_tz":ts_nodash_with_tz,"var":{"json":VariableAccessor(deserialize_json=True),"value":VariableAccessor(deserialize_json=False),},"conn":ConnectionAccessor(),"yesterday_ds":get_yesterday_ds(),"yesterday_ds_nodash":get_yesterday_ds_nodash(),}# Mypy doesn't like turning existing dicts in to a TypeDict -- and we "lie" in the type stub to say it# is one, but in practice it isn't. See https://github.com/python/mypy/issues/8890returnContext(context)# type: ignoredef_is_eligible_to_retry(*,task_instance:TaskInstance|TaskInstancePydantic):""" Is task instance is eligible for retry. :param task_instance: the task instance :meta private: """iftask_instance.state==TaskInstanceState.RESTARTING:# If a task is cleared when running, it goes into RESTARTING state and is always# eligible for retryreturnTrueifnotgetattr(task_instance,"task",None):# Couldn't load the task, don't know number of retries, guess:returntask_instance.try_number<=task_instance.max_triesifTYPE_CHECKING:asserttask_instance.taskreturntask_instance.task.retriesandtask_instance.try_number<=task_instance.max_triesdef_handle_failure(*,task_instance:TaskInstance|TaskInstancePydantic,error:None|str|BaseException,session:Session,test_mode:bool|None=None,context:Context|None=None,force_fail:bool=False,)->None:""" Handle Failure for a task instance. :param task_instance: the task instance :param error: if specified, log the specific exception if thrown :param session: SQLAlchemy ORM Session :param test_mode: doesn't record success or failure in the DB if True :param context: Jinja2 context :param force_fail: if True, task does not retry :meta private: """iftest_modeisNone:test_mode=task_instance.test_modefailure_context=TaskInstance.fetch_handle_failure_context(ti=task_instance,error=error,test_mode=test_mode,context=context,force_fail=force_fail,session=session,)_log_state(task_instance=task_instance,lead_msg="Immediate failure requested. "ifforce_failelse"")if(failure_context["task"]andfailure_context["email_for_state"](failure_context["task"])andfailure_context["task"].email):try:task_instance.email_alert(error,failure_context["task"])exceptException:log.exception("Failed to send email to: %s",failure_context["task"].email)iffailure_context["callbacks"]andfailure_context["context"]:_run_finished_callback(callbacks=failure_context["callbacks"],context=failure_context["context"],)ifnottest_mode:TaskInstance.save_to_db(failure_context["ti"],session)def_get_try_number(*,task_instance:TaskInstance|TaskInstancePydantic):""" Return the try number that a task number will be when it is actually run. If the TaskInstance is currently running, this will match the column in the database, in all other cases this will be incremented. This is designed so that task logs end up in the right file. :param task_instance: the task instance :meta private: """iftask_instance.state==TaskInstanceState.RUNNING.RUNNING:returntask_instance._try_numberreturntask_instance._try_number+1def_set_try_number(*,task_instance:TaskInstance|TaskInstancePydantic,value:int)->None:""" Set a task try number. :param task_instance: the task instance :param value: the try number :meta private: """task_instance._try_number=valuedef_refresh_from_task(*,task_instance:TaskInstance|TaskInstancePydantic,task:Operator,pool_override:str|None=None)->None:""" Copy common attributes from the given task. :param task_instance: the task instance :param task: The task object to copy from :param pool_override: Use the pool_override instead of task's pool :meta private: """task_instance.task=tasktask_instance.queue=task.queuetask_instance.pool=pool_overrideortask.pooltask_instance.pool_slots=task.pool_slotswithcontextlib.suppress(Exception):# This method is called from the different places, and sometimes the TI is not fully initializedtask_instance.priority_weight=task_instance.task.weight_rule.get_weight(task_instance# type: ignore[arg-type])task_instance.run_as_user=task.run_as_user# Do not set max_tries to task.retries here because max_tries is a cumulative# value that needs to be stored in the db.task_instance.executor_config=task.executor_configtask_instance.operator=task.task_typetask_instance.custom_operator_name=getattr(task,"custom_operator_name",None)# Re-apply cluster policy here so that task default do not overload previous datatask_instance_mutation_hook(task_instance)def_record_task_map_for_downstreams(*,task_instance:TaskInstance|TaskInstancePydantic,task:Operator,value:Any,session:Session)->None:""" Record the task map for downstream tasks. :param task_instance: the task instance :param task: The task object :param value: The value :param session: SQLAlchemy ORM Session :meta private: """ifnext(task.iter_mapped_dependants(),None)isNone:# No mapped dependants, no need to validate.return# TODO: We don't push TaskMap for mapped task instances because it's not# currently possible for a downstream to depend on one individual mapped# task instance. This will change when we implement task mapping inside# a mapped task group, and we'll need to further analyze the case.ifisinstance(task,MappedOperator):returnifvalueisNone:raiseXComForMappingNotPushed()ifnot_is_mappable_value(value):raiseUnmappableXComTypePushed(value)task_map=TaskMap.from_task_instance_xcom(task_instance,value)max_map_length=conf.getint("core","max_map_length",fallback=1024)iftask_map.length>max_map_length:raiseUnmappableXComLengthPushed(value,max_map_length)session.merge(task_map)def_get_previous_dagrun(*,task_instance:TaskInstance|TaskInstancePydantic,state:DagRunState|None=None,session:Session|None=None,)->DagRun|None:""" Return the DagRun that ran prior to this task instance's DagRun. :param task_instance: the task instance :param state: If passed, it only take into account instances of a specific state. :param session: SQLAlchemy ORM Session. :meta private: """ifTYPE_CHECKING:asserttask_instance.taskdag=task_instance.task.dagifdagisNone:returnNonedr=task_instance.get_dagrun(session=session)dr.dag=dagfromairflow.models.dagrunimportDagRun# Avoid circular import# We always ignore schedule in dagrun lookup when `state` is given# or the DAG is never scheduled. For legacy reasons, when# `catchup=True`, we use `get_previous_scheduled_dagrun` unless# `ignore_schedule` is `True`.ignore_schedule=stateisnotNoneornotdag.timetable.can_be_scheduledifdag.catchupisTrueandnotignore_schedule:last_dagrun=DagRun.get_previous_scheduled_dagrun(dr.id,session=session)else:last_dagrun=DagRun.get_previous_dagrun(dag_run=dr,session=session,state=state)iflast_dagrun:returnlast_dagrunreturnNonedef_get_previous_execution_date(*,task_instance:TaskInstance|TaskInstancePydantic,state:DagRunState|None,session:Session,)->pendulum.DateTime|None:""" Get execution date from property previous_ti_success. :param task_instance: the task instance :param session: SQLAlchemy ORM Session :param state: If passed, it only take into account instances of a specific state. :meta private: """log.debug("previous_execution_date was called")prev_ti=task_instance.get_previous_ti(state=state,session=session)returnpendulum.instance(prev_ti.execution_date)ifprev_tiandprev_ti.execution_dateelseNonedef_email_alert(*,task_instance:TaskInstance|TaskInstancePydantic,exception,task:BaseOperator)->None:""" Send alert email with exception information. :param task_instance: the task instance :param exception: the exception :param task: task related to the exception :meta private: """subject,html_content,html_content_err=task_instance.get_email_subject_content(exception,task=task)ifTYPE_CHECKING:asserttask.emailtry:send_email(task.email,subject,html_content)exceptException:send_email(task.email,subject,html_content_err)def_get_email_subject_content(*,task_instance:TaskInstance|TaskInstancePydantic,exception:BaseException,task:BaseOperator|None=None,)->tuple[str,str,str]:""" Get the email subject content for exceptions. :param task_instance: the task instance :param exception: the exception sent in the email :param task: :meta private: """# For a ti from DB (without ti.task), return the default valueiftaskisNone:task=getattr(task_instance,"task")use_default=taskisNoneexception_html=str(exception).replace("\n","<br>")default_subject="Airflow alert: {{ti}}"# For reporting purposes, we report based on 1-indexed,# not 0-indexed lists (i.e. Try 1 instead of# Try 0 for the first attempt).default_html_content=("Try {{try_number}} out of {{max_tries + 1}}<br>""Exception:<br>{{exception_html}}<br>"'Log: <a href="{{ti.log_url}}">Link</a><br>'"Host: {{ti.hostname}}<br>"'Mark success: <a href="{{ti.mark_success_url}}">Link</a><br>')default_html_content_err=("Try {{try_number}} out of {{max_tries + 1}}<br>""Exception:<br>Failed attempt to attach error logs<br>"'Log: <a href="{{ti.log_url}}">Link</a><br>'"Host: {{ti.hostname}}<br>"'Mark success: <a href="{{ti.mark_success_url}}">Link</a><br>')# This function is called after changing the state from RUNNING,# so we need to subtract 1 from self.try_number here.current_try_number=task_instance.try_number-1additional_context:dict[str,Any]={"exception":exception,"exception_html":exception_html,"try_number":current_try_number,"max_tries":task_instance.max_tries,}ifuse_default:default_context={"ti":task_instance,**additional_context}jinja_env=jinja2.Environment(loader=jinja2.FileSystemLoader(os.path.dirname(__file__)),autoescape=True)subject=jinja_env.from_string(default_subject).render(**default_context)html_content=jinja_env.from_string(default_html_content).render(**default_context)html_content_err=jinja_env.from_string(default_html_content_err).render(**default_context)else:ifTYPE_CHECKING:asserttask_instance.task# Use the DAG's get_template_env() to set force_sandboxed. Don't add# the flag to the function on task object -- that function can be# overridden, and adding a flag breaks backward compatibility.dag=task_instance.task.get_dag()ifdag:jinja_env=dag.get_template_env(force_sandboxed=True)else:jinja_env=SandboxedEnvironment(cache_size=0)jinja_context=task_instance.get_template_context()context_merge(jinja_context,additional_context)defrender(key:str,content:str)->str:ifconf.has_option("email",key):path=conf.get_mandatory_value("email",key)try:withopen(path)asf:content=f.read()exceptFileNotFoundError:log.warning("Could not find email template file '%s'. Using defaults...",path)exceptOSError:log.exception("Error while using email template %s. Using defaults...",path)returnrender_template_to_string(jinja_env.from_string(content),jinja_context)subject=render("subject_template",default_subject)html_content=render("html_content_template",default_html_content)html_content_err=render("html_content_template",default_html_content_err)returnsubject,html_content,html_content_errdef_run_finished_callback(*,callbacks:None|TaskStateChangeCallback|list[TaskStateChangeCallback],context:Context,)->None:""" Run callback after task finishes. :param callbacks: callbacks to run :param context: callbacks context :meta private: """ifcallbacks:callbacks=callbacksifisinstance(callbacks,list)else[callbacks]forcallbackincallbacks:try:callback(context)exceptException:callback_name=qualname(callback).split(".")[-1]log.exception("Error when executing %s callback",callback_name)# type: ignore[attr-defined]def_log_state(*,task_instance:TaskInstance|TaskInstancePydantic,lead_msg:str="")->None:""" Log task state. :param task_instance: the task instance :param lead_msg: lead message :meta private: """params=[lead_msg,str(task_instance.state).upper(),task_instance.dag_id,task_instance.task_id,task_instance.run_id,]message="%sMarking task as %s. dag_id=%s, task_id=%s, run_id=%s, "iftask_instance.map_index>=0:params.append(task_instance.map_index)message+="map_index=%d, "message+="execution_date=%s, start_date=%s, end_date=%s"log.info(message,*params,_date_or_empty(task_instance=task_instance,attr="execution_date"),_date_or_empty(task_instance=task_instance,attr="start_date"),_date_or_empty(task_instance=task_instance,attr="end_date"),)def_date_or_empty(*,task_instance:TaskInstance|TaskInstancePydantic,attr:str)->str:""" Fetch a date attribute or None of it does not exist. :param task_instance: the task instance :param attr: the attribute name :meta private: """result:datetime|None=getattr(task_instance,attr,None)returnresult.strftime("%Y%m%dT%H%M%S")ifresultelse""def_get_previous_ti(*,task_instance:TaskInstance|TaskInstancePydantic,session:Session,state:DagRunState|None=None,)->TaskInstance|TaskInstancePydantic|None:""" Get task instance for the task that ran before this task instance. :param task_instance: the task instance :param state: If passed, it only take into account instances of a specific state. :param session: SQLAlchemy ORM Session :meta private: """dagrun=task_instance.get_previous_dagrun(state,session=session)ifdagrunisNone:returnNonereturndagrun.get_task_instance(task_instance.task_id,session=session)
[docs]classTaskInstance(Base,LoggingMixin):""" Task instances store the state of a task instance. This table is the authority and single source of truth around what tasks have run and the state they are in. The SqlAlchemy model doesn't have a SqlAlchemy foreign key to the task or dag model deliberately to have more control over transactions. Database transactions on this table should insure double triggers and any confusion around what task instances are or aren't ready to run even while multiple schedulers may be firing task instances. A value of -1 in map_index represents any of: a TI without mapped tasks; a TI with mapped tasks that has yet to be expanded (state=pending); a TI with mapped tasks that expanded to an empty list (state=skipped). """
# The trigger_timeout should be TIMESTAMP(using UtcDateTime) but for ease of# migration, we are keeping it as DateTime pending a change where expensive# migration is inevitable.# The method to call next, and any extra arguments to pass to it.# Usually used when resuming from DEFERRED.
_task_display_property_value=Column("task_display_name",String(2000),nullable=True)# If adding new fields here then remember to add them to# refresh_from_db() or they won't display in the UI correctly
[docs]__table_args__=(Index("ti_dag_state",dag_id,state),Index("ti_dag_run",dag_id,run_id),Index("ti_state",state),Index("ti_state_lkp",dag_id,task_id,run_id,state),# The below index has been added to improve performance on postgres setups with tens of millions of# taskinstance rows. Aim is to improve the below query (it can be used to find the last successful# execution date of a task instance):# SELECT start_date FROM task_instance WHERE dag_id = 'xx' AND task_id = 'yy' AND state = 'success'# ORDER BY start_date DESC NULLS LAST LIMIT 1;# Existing "ti_state_lkp" is not enough for such query when this table has millions of rows, since# rows have to be fetched in order to retrieve the start_date column. With this index, INDEX ONLY SCAN# is performed and that query runs within milliseconds.Index("ti_pool",pool,state,priority_weight),Index("ti_job_id",job_id),Index("ti_trigger_id",trigger_id),PrimaryKeyConstraint("dag_id","task_id","run_id","map_index",name="task_instance_pkey"),ForeignKeyConstraint([trigger_id],["trigger.id"],name="task_instance_trigger_id_fkey",ondelete="CASCADE",),ForeignKeyConstraint([dag_id,run_id],["dag_run.dag_id","dag_run.run_id"],name="task_instance_dag_run_fkey",ondelete="CASCADE",),)
raw:bool|None=None"""Indicate to FileTaskHandler that logging context should be set up for trigger logging. :meta private: """_logger_name="airflow.task"def__init__(self,task:Operator,execution_date:datetime|None=None,run_id:str|None=None,state:str|None=None,map_index:int=-1,):super().__init__()self.dag_id=task.dag_idself.task_id=task.task_idself.map_index=map_indexself.refresh_from_task(task)ifTYPE_CHECKING:assertself.task# init_on_load will config the logself.init_on_load()ifrun_idisNoneandexecution_dateisnotNone:fromairflow.models.dagrunimportDagRun# Avoid circular importwarnings.warn("Passing an execution_date to `TaskInstance()` is deprecated in favour of passing a run_id",RemovedInAirflow3Warning,# Stack level is 4 because SQLA adds some wrappers around the constructorstacklevel=4,)# make sure we have a localized execution_date stored in UTCifexecution_dateandnottimezone.is_localized(execution_date):self.log.warning("execution date %s has no timezone information. Using default from dag or system",execution_date,)ifself.task.has_dag():ifTYPE_CHECKING:assertself.task.dagexecution_date=timezone.make_aware(execution_date,self.task.dag.timezone)else:execution_date=timezone.make_aware(execution_date)execution_date=timezone.convert_to_utc(execution_date)withcreate_session()assession:run_id=(session.query(DagRun.run_id).filter_by(dag_id=self.dag_id,execution_date=execution_date).scalar())ifrun_idisNone:raiseDagRunNotFound(f"DagRun for {self.dag_id!r} with date {execution_date} not found")fromNoneself.run_id=run_idself.try_number=0self.max_tries=self.task.retriesself.unixname=getuser()ifstate:self.state=stateself.hostname=""# Is this TaskInstance being currently running within `airflow tasks run --raw`.# Not persisted to the database so only valid for the current processself.raw=False# can be changed when calling 'run'self.test_mode=False
[docs]definit_on_load(self)->None:"""Initialize the attributes that aren't stored in the DB."""self.test_mode=False# can be changed when calling 'run'
@hybrid_property
[docs]deftry_number(self):""" Return the try number that a task number will be when it is actually run. If the TaskInstance is currently running, this will match the column in the database, in all other cases this will be incremented. This is designed so that task logs end up in the right file. """return_get_try_number(task_instance=self)
@try_number.expressiondeftry_number(cls):""" Return the expression to be used by SQLAlchemy when filtering on try_number. This is required because the override in the get_try_number function causes try_number values to be off by one when listing tasks in the UI. :meta private: """returncls._try_number@try_number.setterdeftry_number(self,value:int)->None:""" Set a task try number. :param value: the try number """_set_try_number(task_instance=self,value=value)@property
[docs]defprev_attempted_tries(self)->int:""" Calculate the number of previously attempted tries, defaulting to 0. Expose this for the Task Tries and Gantt graph views. Using `try_number` throws off the counts for non-running tasks. Also useful in error logging contexts to get the try number for the last try that was attempted. """returnself._try_number
[docs]defoperator_name(self)->str|None:"""@property: use a more friendly display name for the operator, if set."""returnself.custom_operator_nameorself.operator
@staticmethoddef_command_as_list(ti:TaskInstance|TaskInstancePydantic,mark_success:bool=False,ignore_all_deps:bool=False,ignore_task_deps:bool=False,ignore_depends_on_past:bool=False,wait_for_past_depends_before_skipping:bool=False,ignore_ti_state:bool=False,local:bool=False,pickle_id:int|None=None,raw:bool=False,job_id:str|None=None,pool:str|None=None,cfg_path:str|None=None,)->list[str]:dag:DAG|DagModel|DagModelPydantic|None# Use the dag if we have it, else fallback to the ORM dag_model, which might not be loadedifhasattr(ti,"task")andgetattr(ti.task,"dag",None)isnotNone:ifTYPE_CHECKING:assertti.taskdag=ti.task.dagelse:dag=ti.dag_modelifdagisNone:raiseValueError("DagModel is empty")should_pass_filepath=notpickle_idanddagpath:PurePath|None=Noneifshould_pass_filepath:ifdag.is_subdag:ifTYPE_CHECKING:assertdag.parent_dagisnotNonepath=dag.parent_dag.relative_filelocelse:path=dag.relative_filelocifpath:ifnotpath.is_absolute():path="DAGS_FOLDER"/pathreturnTaskInstance.generate_command(ti.dag_id,ti.task_id,run_id=ti.run_id,mark_success=mark_success,ignore_all_deps=ignore_all_deps,ignore_task_deps=ignore_task_deps,ignore_depends_on_past=ignore_depends_on_past,wait_for_past_depends_before_skipping=wait_for_past_depends_before_skipping,ignore_ti_state=ignore_ti_state,local=local,pickle_id=pickle_id,file_path=path,raw=raw,job_id=job_id,pool=pool,cfg_path=cfg_path,map_index=ti.map_index,)
[docs]defcommand_as_list(self,mark_success:bool=False,ignore_all_deps:bool=False,ignore_task_deps:bool=False,ignore_depends_on_past:bool=False,wait_for_past_depends_before_skipping:bool=False,ignore_ti_state:bool=False,local:bool=False,pickle_id:int|None=None,raw:bool=False,job_id:str|None=None,pool:str|None=None,cfg_path:str|None=None,)->list[str]:""" Return a command that can be executed anywhere where airflow is installed. This command is part of the message sent to executors by the orchestrator. """returnTaskInstance._command_as_list(ti=self,mark_success=mark_success,ignore_all_deps=ignore_all_deps,ignore_task_deps=ignore_task_deps,ignore_depends_on_past=ignore_depends_on_past,wait_for_past_depends_before_skipping=wait_for_past_depends_before_skipping,ignore_ti_state=ignore_ti_state,local=local,pickle_id=pickle_id,raw=raw,job_id=job_id,pool=pool,cfg_path=cfg_path,)
@staticmethod
[docs]defgenerate_command(dag_id:str,task_id:str,run_id:str,mark_success:bool=False,ignore_all_deps:bool=False,ignore_depends_on_past:bool=False,wait_for_past_depends_before_skipping:bool=False,ignore_task_deps:bool=False,ignore_ti_state:bool=False,local:bool=False,pickle_id:int|None=None,file_path:PurePath|str|None=None,raw:bool=False,job_id:str|None=None,pool:str|None=None,cfg_path:str|None=None,map_index:int=-1,)->list[str]:""" Generate the shell command required to execute this task instance. :param dag_id: DAG ID :param task_id: Task ID :param run_id: The run_id of this task's DagRun :param mark_success: Whether to mark the task as successful :param ignore_all_deps: Ignore all ignorable dependencies. Overrides the other ignore_* parameters. :param ignore_depends_on_past: Ignore depends_on_past parameter of DAGs (e.g. for Backfills) :param wait_for_past_depends_before_skipping: Wait for past depends before marking the ti as skipped :param ignore_task_deps: Ignore task-specific dependencies such as depends_on_past and trigger rule :param ignore_ti_state: Ignore the task instance's previous failure/success :param local: Whether to run the task locally :param pickle_id: If the DAG was serialized to the DB, the ID associated with the pickled DAG :param file_path: path to the file containing the DAG definition :param raw: raw mode (needs more details) :param job_id: job ID (needs more details) :param pool: the Airflow pool that the task should run in :param cfg_path: the Path to the configuration file :return: shell command that can be used to run the task instance """cmd=["airflow","tasks","run",dag_id,task_id,run_id]ifmark_success:cmd.extend(["--mark-success"])ifpickle_id:cmd.extend(["--pickle",str(pickle_id)])ifjob_id:cmd.extend(["--job-id",str(job_id)])ifignore_all_deps:cmd.extend(["--ignore-all-dependencies"])ifignore_task_deps:cmd.extend(["--ignore-dependencies"])ifignore_depends_on_past:cmd.extend(["--depends-on-past","ignore"])elifwait_for_past_depends_before_skipping:cmd.extend(["--depends-on-past","wait"])ifignore_ti_state:cmd.extend(["--force"])iflocal:cmd.extend(["--local"])ifpool:cmd.extend(["--pool",pool])ifraw:cmd.extend(["--raw"])iffile_path:cmd.extend(["--subdir",os.fspath(file_path)])ifcfg_path:cmd.extend(["--cfg-path",cfg_path])ifmap_index!=-1:cmd.extend(["--map-index",str(map_index)])returncmd
@property
[docs]deflog_url(self)->str:"""Log URL for TaskInstance."""run_id=quote(self.run_id)base_url=conf.get_mandatory_value("webserver","BASE_URL")return(f"{base_url}"f"/dags"f"/{self.dag_id}"f"/grid"f"?dag_run_id={run_id}"f"&task_id={self.task_id}"f"&map_index={self.map_index}""&tab=logs")
@property
[docs]defmark_success_url(self)->str:"""URL to mark TI success."""base_url=conf.get_mandatory_value("webserver","BASE_URL")return(f"{base_url}""/confirm"f"?task_id={self.task_id}"f"&dag_id={self.dag_id}"f"&dag_run_id={quote(self.run_id)}""&upstream=false""&downstream=false""&state=success")
@provide_session
[docs]defcurrent_state(self,session:Session=NEW_SESSION)->str:""" Get the very latest state from the database. If a session is passed, we use and looking up the state becomes part of the session, otherwise a new session is used. sqlalchemy.inspect is used here to get the primary keys ensuring that if they change it will not regress :param session: SQLAlchemy ORM Session """filters=(col==getattr(self,col.name)forcolininspect(TaskInstance).primary_key)returnsession.query(TaskInstance.state).filter(*filters).scalar()
@provide_session
[docs]deferror(self,session:Session=NEW_SESSION)->None:""" Force the task instance's state to FAILED in the database. :param session: SQLAlchemy ORM Session """self.log.error("Recording the task instance as FAILED")self.state=TaskInstanceState.FAILEDsession.merge(self)session.commit()
[docs]defrefresh_from_db(self,session:Session=NEW_SESSION,lock_for_update:bool=False)->None:""" Refresh the task instance from the database based on the primary key. :param session: SQLAlchemy ORM Session :param lock_for_update: if True, indicates that the database should lock the TaskInstance (issuing a FOR UPDATE clause) until the session is committed. """_refresh_from_db(task_instance=self,session=session,lock_for_update=lock_for_update)
[docs]defrefresh_from_task(self,task:Operator,pool_override:str|None=None)->None:""" Copy common attributes from the given task. :param task: The task object to copy from :param pool_override: Use the pool_override instead of task's pool """_refresh_from_task(task_instance=self,task=task,pool_override=pool_override)
@staticmethod@internal_api_call@provide_sessiondef_clear_xcom_data(ti:TaskInstance|TaskInstancePydantic,session:Session=NEW_SESSION)->None:"""Clear all XCom data from the database for the task instance. If the task is unmapped, all XComs matching this task ID in the same DAG run are removed. If the task is mapped, only the one with matching map index is removed. :param ti: The TI for which we need to clear xcoms. :param session: SQLAlchemy ORM Session """ti.log.debug("Clearing XCom data")ifti.map_index<0:map_index:int|None=Noneelse:map_index=ti.map_indexXCom.clear(dag_id=ti.dag_id,task_id=ti.task_id,run_id=ti.run_id,map_index=map_index,session=session,)@provide_session
[docs]defkey(self)->TaskInstanceKey:"""Returns a tuple that identifies the task instance uniquely."""returnTaskInstanceKey(self.dag_id,self.task_id,self.run_id,self.try_number,self.map_index)
@staticmethod@internal_api_calldef_set_state(ti:TaskInstance|TaskInstancePydantic,state,session:Session)->bool:ifnotisinstance(ti,TaskInstance):ti=session.scalars(select(TaskInstance).where(TaskInstance.task_id==ti.task_id,TaskInstance.dag_id==ti.dag_id,TaskInstance.run_id==ti.run_id,TaskInstance.map_index==ti.map_index,)).one()ifti.state==state:returnFalsecurrent_time=timezone.utcnow()ti.log.debug("Setting task state for %s to %s",ti,state)ti.state=stateti.start_date=ti.start_dateorcurrent_timeifti.stateinState.finishedorti.state==TaskInstanceState.UP_FOR_RETRY:ti.end_date=ti.end_dateorcurrent_timeti.duration=(ti.end_date-ti.start_date).total_seconds()session.merge(ti)returnTrue@provide_session
[docs]defset_state(self,state:str|None,session:Session=NEW_SESSION)->bool:""" Set TaskInstance state. :param state: State to set for the TI :param session: SQLAlchemy ORM Session :return: Was the state changed """returnself._set_state(ti=self,state=state,session=session)
@property
[docs]defis_premature(self)->bool:"""Returns whether a task is in UP_FOR_RETRY state and its retry interval has elapsed."""# is the task still in the retry waiting period?returnself.state==TaskInstanceState.UP_FOR_RETRYandnotself.ready_for_retry()
@provide_session
[docs]defare_dependents_done(self,session:Session=NEW_SESSION)->bool:""" Check whether the immediate dependents of this task instance have succeeded or have been skipped. This is meant to be used by wait_for_downstream. This is useful when you do not want to start processing the next schedule of a task until the dependents are done. For instance, if the task DROPs and recreates a table. :param session: SQLAlchemy ORM Session """task=self.taskifTYPE_CHECKING:asserttaskifnottask.downstream_task_ids:returnTrueti=session.query(func.count(TaskInstance.task_id)).filter(TaskInstance.dag_id==self.dag_id,TaskInstance.task_id.in_(task.downstream_task_ids),TaskInstance.run_id==self.run_id,TaskInstance.state.in_((TaskInstanceState.SKIPPED,TaskInstanceState.SUCCESS)),)count=ti[0][0]returncount==len(task.downstream_task_ids)
@provide_session
[docs]defget_previous_dagrun(self,state:DagRunState|None=None,session:Session|None=None,)->DagRun|None:""" Return the DagRun that ran before this task instance's DagRun. :param state: If passed, it only take into account instances of a specific state. :param session: SQLAlchemy ORM Session. """return_get_previous_dagrun(task_instance=self,state=state,session=session)
@provide_session
[docs]defget_previous_ti(self,state:DagRunState|None=None,session:Session=NEW_SESSION,)->TaskInstance|TaskInstancePydantic|None:""" Return the task instance for the task that ran before this task instance. :param session: SQLAlchemy ORM Session :param state: If passed, it only take into account instances of a specific state. """return_get_previous_ti(task_instance=self,state=state,session=session)
@property
[docs]defprevious_ti(self)->TaskInstance|TaskInstancePydantic|None:""" This attribute is deprecated. Please use :class:`airflow.models.taskinstance.TaskInstance.get_previous_ti`. """warnings.warn(""" This attribute is deprecated. Please use `airflow.models.taskinstance.TaskInstance.get_previous_ti` method. """,RemovedInAirflow3Warning,stacklevel=2,)returnself.get_previous_ti()
@property
[docs]defprevious_ti_success(self)->TaskInstance|TaskInstancePydantic|None:""" This attribute is deprecated. Please use :class:`airflow.models.taskinstance.TaskInstance.get_previous_ti`. """warnings.warn(""" This attribute is deprecated. Please use `airflow.models.taskinstance.TaskInstance.get_previous_ti` method. """,RemovedInAirflow3Warning,stacklevel=2,)returnself.get_previous_ti(state=DagRunState.SUCCESS)
@provide_session
[docs]defget_previous_execution_date(self,state:DagRunState|None=None,session:Session=NEW_SESSION,)->pendulum.DateTime|None:""" Return the execution date from property previous_ti_success. :param state: If passed, it only take into account instances of a specific state. :param session: SQLAlchemy ORM Session """return_get_previous_execution_date(task_instance=self,state=state,session=session)
@provide_session
[docs]defget_previous_start_date(self,state:DagRunState|None=None,session:Session=NEW_SESSION)->pendulum.DateTime|None:""" Return the start date from property previous_ti_success. :param state: If passed, it only take into account instances of a specific state. :param session: SQLAlchemy ORM Session """self.log.debug("previous_start_date was called")prev_ti=self.get_previous_ti(state=state,session=session)# prev_ti may not exist and prev_ti.start_date may be None.returnpendulum.instance(prev_ti.start_date)ifprev_tiandprev_ti.start_dateelseNone
@property
[docs]defprevious_start_date_success(self)->pendulum.DateTime|None:""" This attribute is deprecated. Please use :class:`airflow.models.taskinstance.TaskInstance.get_previous_start_date`. """warnings.warn(""" This attribute is deprecated. Please use `airflow.models.taskinstance.TaskInstance.get_previous_start_date` method. """,RemovedInAirflow3Warning,stacklevel=2,)returnself.get_previous_start_date(state=DagRunState.SUCCESS)
@provide_session
[docs]defare_dependencies_met(self,dep_context:DepContext|None=None,session:Session=NEW_SESSION,verbose:bool=False)->bool:""" Are all conditions met for this task instance to be run given the context for the dependencies. (e.g. a task instance being force run from the UI will ignore some dependencies). :param dep_context: The execution context that determines the dependencies that should be evaluated. :param session: database session :param verbose: whether log details on failed dependencies on info or debug log level """dep_context=dep_contextorDepContext()failed=Falseverbose_aware_logger=self.log.infoifverboseelseself.log.debugfordep_statusinself.get_failed_dep_statuses(dep_context=dep_context,session=session):failed=Trueverbose_aware_logger("Dependencies not met for %s, dependency '%s' FAILED: %s",self,dep_status.dep_name,dep_status.reason,)iffailed:returnFalseverbose_aware_logger("Dependencies all met for dep_context=%s ti=%s",dep_context.description,self)returnTrue
[docs]defnext_retry_datetime(self):""" Get datetime of the next retry if the task instance fails. For exponential backoff, retry_delay is used as base and will be converted to seconds. """fromairflow.models.abstractoperatorimportMAX_RETRY_DELAYdelay=self.task.retry_delayifself.task.retry_exponential_backoff:# If the min_backoff calculation is below 1, it will be converted to 0 via int. Thus,# we must round up prior to converting to an int, otherwise a divide by zero error# will occur in the modded_hash calculation.min_backoff=math.ceil(delay.total_seconds()*(2**(self.try_number-2)))# In the case when delay.total_seconds() is 0, min_backoff will not be rounded up to 1.# To address this, we impose a lower bound of 1 on min_backoff. This effectively makes# the ceiling function unnecessary, but the ceiling function was retained to avoid# introducing a breaking change.ifmin_backoff<1:min_backoff=1# deterministic per task instanceti_hash=int(hashlib.sha1(f"{self.dag_id}#{self.task_id}#{self.execution_date}#{self.try_number}".encode()).hexdigest(),16,)# between 1 and 1.0 * delay * (2^retry_number)modded_hash=min_backoff+ti_hash%min_backoff# timedelta has a maximum representable value. The exponentiation# here means this value can be exceeded after a certain number# of tries (around 50 if the initial delay is 1s, even fewer if# the delay is larger). Cap the value here before creating a# timedelta object so the operation doesn't fail with "OverflowError".delay_backoff_in_seconds=min(modded_hash,MAX_RETRY_DELAY)delay=timedelta(seconds=delay_backoff_in_seconds)ifself.task.max_retry_delay:delay=min(self.task.max_retry_delay,delay)returnself.end_date+delay
[docs]defready_for_retry(self)->bool:"""Check on whether the task instance is in the right state and timeframe to be retried."""returnself.state==TaskInstanceState.UP_FOR_RETRYandself.next_retry_datetime()<timezone.utcnow()
[docs]defget_dagrun(self,session:Session=NEW_SESSION)->DagRun:""" Return the DagRun for this TaskInstance. :param session: SQLAlchemy ORM Session :return: DagRun """info=inspect(self)ifinfo.attrs.dag_run.loaded_valueisnotNO_VALUE:ifgetattr(self,"task",None)isnotNone:ifTYPE_CHECKING:assertself.taskself.dag_run.dag=self.task.dagreturnself.dag_rundr=self._get_dagrun(self.dag_id,self.run_id,session)ifgetattr(self,"task",None)isnotNone:ifTYPE_CHECKING:assertself.taskdr.dag=self.task.dag# Record it in the instance for next time. This means that `self.execution_date` will work correctlyset_committed_value(self,"dag_run",dr)returndr
@classmethod@internal_api_call@provide_sessiondef_check_and_change_state_before_execution(cls,task_instance:TaskInstance|TaskInstancePydantic,verbose:bool=True,ignore_all_deps:bool=False,ignore_depends_on_past:bool=False,wait_for_past_depends_before_skipping:bool=False,ignore_task_deps:bool=False,ignore_ti_state:bool=False,mark_success:bool=False,test_mode:bool=False,hostname:str="",job_id:str|None=None,pool:str|None=None,external_executor_id:str|None=None,session:Session=NEW_SESSION,)->bool:""" Check dependencies and then sets state to RUNNING if they are met. Returns True if and only if state is set to RUNNING, which implies that task should be executed, in preparation for _run_raw_task. :param verbose: whether to turn on more verbose logging :param ignore_all_deps: Ignore all of the non-critical dependencies, just runs :param ignore_depends_on_past: Ignore depends_on_past DAG attribute :param wait_for_past_depends_before_skipping: Wait for past depends before mark the ti as skipped :param ignore_task_deps: Don't check the dependencies of this TaskInstance's task :param ignore_ti_state: Disregards previous task instance state :param mark_success: Don't run the task, mark its state as success :param test_mode: Doesn't record success or failure in the DB :param hostname: The hostname of the worker running the task instance. :param job_id: Job (BackfillJob / LocalTaskJob / SchedulerJob) ID :param pool: specifies the pool to use to run the task instance :param external_executor_id: The identifier of the celery executor :param session: SQLAlchemy ORM Session :return: whether the state was changed to running or not """ifTYPE_CHECKING:asserttask_instance.taskifisinstance(task_instance,TaskInstance):ti:TaskInstance=task_instanceelse:# isinstance(task_instance,TaskInstancePydantic)filters=(col==getattr(task_instance,col.name)forcolininspect(TaskInstance).primary_key)ti=session.query(TaskInstance).filter(*filters).scalar()task=task_instance.taskti.refresh_from_task(task,pool_override=pool)ti.test_mode=test_modeti.refresh_from_db(session=session,lock_for_update=True)ti.job_id=job_idti.hostname=hostnameti.pid=Noneifnotignore_all_depsandnotignore_ti_stateandti.state==TaskInstanceState.SUCCESS:Stats.incr("previously_succeeded",tags=ti.stats_tags)ifnotmark_success:# Firstly find non-runnable and non-requeueable tis.# Since mark_success is not set, we do nothing.non_requeueable_dep_context=DepContext(deps=RUNNING_DEPS-REQUEUEABLE_DEPS,ignore_all_deps=ignore_all_deps,ignore_ti_state=ignore_ti_state,ignore_depends_on_past=ignore_depends_on_past,wait_for_past_depends_before_skipping=wait_for_past_depends_before_skipping,ignore_task_deps=ignore_task_deps,description="non-requeueable deps",)ifnotti.are_dependencies_met(dep_context=non_requeueable_dep_context,session=session,verbose=True):session.commit()returnFalse# For reporting purposes, we report based on 1-indexed,# not 0-indexed lists (i.e. Attempt 1 instead of# Attempt 0 for the first attempt).# Set the task start date. In case it was re-scheduled use the initial# start date that is recorded in task_reschedule table# If the task continues after being deferred (next_method is set), use the original start_dateti.start_date=ti.start_dateifti.next_methodelsetimezone.utcnow()ifti.state==TaskInstanceState.UP_FOR_RESCHEDULE:tr_start_date=session.scalar(TR.stmt_for_task_instance(ti,descending=False).with_only_columns(TR.start_date).limit(1))iftr_start_date:ti.start_date=tr_start_date# Secondly we find non-runnable but requeueable tis. We reset its state.# This is because we might have hit concurrency limits,# e.g. because of backfilling.dep_context=DepContext(deps=REQUEUEABLE_DEPS,ignore_all_deps=ignore_all_deps,ignore_depends_on_past=ignore_depends_on_past,wait_for_past_depends_before_skipping=wait_for_past_depends_before_skipping,ignore_task_deps=ignore_task_deps,ignore_ti_state=ignore_ti_state,description="requeueable deps",)ifnotti.are_dependencies_met(dep_context=dep_context,session=session,verbose=True):ti.state=Nonecls.logger().warning("Rescheduling due to concurrency limits reached ""at task runtime. Attempt %s of ""%s. State set to NONE.",ti.try_number,ti.max_tries+1,)ti.queued_dttm=timezone.utcnow()session.merge(ti)session.commit()returnFalseifti.next_kwargsisnotNone:cls.logger().info("Resuming after deferral")else:cls.logger().info("Starting attempt %s of %s",ti.try_number,ti.max_tries+1)ti._try_number+=1ifnottest_mode:session.add(Log(TaskInstanceState.RUNNING.value,ti))ti.state=TaskInstanceState.RUNNINGti.emit_state_change_metric(TaskInstanceState.RUNNING)ifexternal_executor_id:ti.external_executor_id=external_executor_idti.end_date=Noneifnottest_mode:session.merge(ti).task=tasksession.commit()# Closing all pooled connections to prevent# "max number of connections reached"settings.engine.dispose()# type: ignoreifverbose:ifmark_success:cls.logger().info("Marking success for %s on %s",ti.task,ti.execution_date)else:cls.logger().info("Executing %s on %s",ti.task,ti.execution_date)returnTrue@provide_session
[docs]defemit_state_change_metric(self,new_state:TaskInstanceState)->None:""" Send a time metric representing how much time a given state transition took. The previous state and metric name is deduced from the state the task was put in. :param new_state: The state that has just been set for this task. We do not use `self.state`, because sometimes the state is updated directly in the DB and not in the local TaskInstance object. Supported states: QUEUED and RUNNING """ifself.end_date:# if the task has an end date, it means that this is not its first round.# we send the state transition time metric only on the first try, otherwise it gets more complex.return# switch on state and deduce which metric to sendifnew_state==TaskInstanceState.RUNNING:metric_name="queued_duration"ifself.queued_dttmisNone:# this should not really happen except in tests or rare cases,# but we don't want to create errors just for a metric, so we just skip itself.log.warning("cannot record %s for task %s because previous state change time has not been saved",metric_name,self.task_id,)returntiming=timezone.utcnow()-self.queued_dttmelifnew_state==TaskInstanceState.QUEUED:metric_name="scheduled_duration"ifself.start_dateisNone:# This check does not work correctly before fields like `scheduled_dttm` are implemented.# TODO: Change the level to WARNING once it's viable.# see #30612 #34493 and #34771 for more detailsself.log.debug("cannot record %s for task %s because previous state change time has not been saved",metric_name,self.task_id,)returntiming=timezone.utcnow()-self.start_dateelse:raiseNotImplementedError("no metric emission setup for state %s",new_state)# send metric twice, once (legacy) with tags in the name and once with tags as tagsStats.timing(f"dag.{self.dag_id}.{self.task_id}.{metric_name}",timing)Stats.timing(f"task.{metric_name}",timing,tags={"task_id":self.task_id,"dag_id":self.dag_id})
[docs]defclear_next_method_args(self)->None:"""Ensure we unset next_method and next_kwargs to ensure that any retries don't reuse them."""_clear_next_method_args(task_instance=self)
@provide_session@Sentry.enrich_errorsdef_run_raw_task(self,mark_success:bool=False,test_mode:bool=False,job_id:str|None=None,pool:str|None=None,raise_on_defer:bool=False,session:Session=NEW_SESSION,)->TaskReturnCode|None:""" Run a task, update the state upon completion, and run any appropriate callbacks. Immediately runs the task (without checking or changing db state before execution) and then sets the appropriate final state after completion and runs any post-execute callbacks. Meant to be called only after another function changes the state to running. :param mark_success: Don't run the task, mark its state as success :param test_mode: Doesn't record success or failure in the DB :param pool: specifies the pool to use to run the task instance :param session: SQLAlchemy ORM Session """ifTYPE_CHECKING:assertself.taskself.test_mode=test_modeself.refresh_from_task(self.task,pool_override=pool)self.refresh_from_db(session=session)self.job_id=job_idself.hostname=get_hostname()self.pid=os.getpid()ifnottest_mode:session.merge(self)session.commit()actual_start_date=timezone.utcnow()Stats.incr(f"ti.start.{self.task.dag_id}.{self.task.task_id}",tags=self.stats_tags)# Same metric with taggingStats.incr("ti.start",tags=self.stats_tags)# Initialize final state counters at zeroforstateinState.task_states:Stats.incr(f"ti.finish.{self.task.dag_id}.{self.task.task_id}.{state}",count=0,tags=self.stats_tags,)# Same metric with taggingStats.incr("ti.finish",count=0,tags={**self.stats_tags,"state":str(state)},)withset_current_task_instance_session(session=session):self.task=self.task.prepare_for_execution()context=self.get_template_context(ignore_param_exceptions=False)try:ifnotmark_success:self._execute_task_with_callbacks(context,test_mode,session=session)ifnottest_mode:self.refresh_from_db(lock_for_update=True,session=session)self.state=TaskInstanceState.SUCCESSexceptTaskDeferredasdefer:# The task has signalled it wants to defer execution based on# a trigger.ifraise_on_defer:raiseself.defer_task(defer=defer,session=session)self.log.info("Pausing task as DEFERRED. dag_id=%s, task_id=%s, run_id=%s, execution_date=%s, start_date=%s",self.dag_id,self.task_id,self.run_id,_date_or_empty(task_instance=self,attr="execution_date"),_date_or_empty(task_instance=self,attr="start_date"),)ifnottest_mode:session.add(Log(self.state,self))session.merge(self)session.commit()returnTaskReturnCode.DEFERREDexceptAirflowSkipExceptionase:# Recording SKIP# log only if exception has any arguments to prevent log floodingife.args:self.log.info(e)ifnottest_mode:self.refresh_from_db(lock_for_update=True,session=session)_run_finished_callback(callbacks=self.task.on_skipped_callback,context=context)session.commit()self.state=TaskInstanceState.SKIPPEDexceptAirflowRescheduleExceptionasreschedule_exception:self._handle_reschedule(actual_start_date,reschedule_exception,test_mode,session=session)session.commit()returnNoneexcept(AirflowFailException,AirflowSensorTimeout)ase:# If AirflowFailException is raised, task should not retry.# If a sensor in reschedule mode reaches timeout, task should not retry.self.handle_failure(e,test_mode,context,force_fail=True,session=session)session.commit()raiseexcept(AirflowTaskTimeout,AirflowException,AirflowTaskTerminated)ase:ifnottest_mode:self.refresh_from_db(lock_for_update=True,session=session)# for case when task is marked as success/failed externally# or dagrun timed out and task is marked as skipped# current behavior doesn't hit the callbacksifself.stateinState.finished:self.clear_next_method_args()session.merge(self)session.commit()returnNoneelse:self.handle_failure(e,test_mode,context,session=session)session.commit()raiseexceptSystemExitase:# We have already handled SystemExit with success codes (0 and None) in the `_execute_task`.# Therefore, here we must handle only error codes.msg=f"Task failed due to SystemExit({e.code})"self.handle_failure(msg,test_mode,context,session=session)session.commit()raiseAirflowException(msg)exceptBaseExceptionase:self.handle_failure(e,test_mode,context,session=session)session.commit()raisefinally:Stats.incr(f"ti.finish.{self.dag_id}.{self.task_id}.{self.state}",tags=self.stats_tags)# Same metric with taggingStats.incr("ti.finish",tags={**self.stats_tags,"state":str(self.state)})# Recording SKIPPED or SUCCESSself.clear_next_method_args()self.end_date=timezone.utcnow()_log_state(task_instance=self)self.set_duration()# run on_success_callback before db committing# otherwise, the LocalTaskJob sees the state is changed to `success`,# but the task_runner is still running, LocalTaskJob then treats the state is set externally!_run_finished_callback(callbacks=self.task.on_success_callback,context=context)ifnottest_mode:session.add(Log(self.state,self))session.merge(self).task=self.taskifself.state==TaskInstanceState.SUCCESS:self._register_dataset_changes(session=session)session.commit()ifself.state==TaskInstanceState.SUCCESS:get_listener_manager().hook.on_task_instance_success(previous_state=TaskInstanceState.RUNNING,task_instance=self,session=session)returnNonedef_register_dataset_changes(self,*,session:Session)->None:ifTYPE_CHECKING:assertself.taskforobjinself.task.outletsor[]:self.log.debug("outlet obj %s",obj)# Lineage can have other types of objects besides datasetsifisinstance(obj,Dataset):dataset_manager.register_dataset_change(task_instance=self,dataset=obj,session=session,)def_execute_task_with_callbacks(self,context:Context,test_mode:bool=False,*,session:Session):"""Prepare Task for Execution."""fromairflow.models.renderedtifieldsimportRenderedTaskInstanceFieldsifTYPE_CHECKING:assertself.taskparent_pid=os.getpid()defsignal_handler(signum,frame):pid=os.getpid()# If a task forks during execution (from DAG code) for whatever# reason, we want to make sure that we react to the signal only in# the process that we've spawned ourselves (referred to here as the# parent process).ifpid!=parent_pid:os._exit(1)returnself.log.error("Received SIGTERM. Terminating subprocesses.")self.task.on_kill()raiseAirflowTaskTerminated("Task received SIGTERM signal")signal.signal(signal.SIGTERM,signal_handler)# Don't clear Xcom until the task is certain to execute, and check if we are resuming from deferral.ifnotself.next_method:self.clear_xcom_data()withStats.timer(f"dag.{self.task.dag_id}.{self.task.task_id}.duration"),Stats.timer("task.duration",tags=self.stats_tags):# Set the validated/merged params on the task object.self.task.params=context["params"]withset_current_context(context):dag=self.task.get_dag()ifdagisnotNone:jinja_env=dag.get_template_env()else:jinja_env=Nonetask_orig=self.render_templates(context=context,jinja_env=jinja_env)ifnottest_mode:rtif=RenderedTaskInstanceFields(ti=self,render_templates=False)RenderedTaskInstanceFields.write(rtif)RenderedTaskInstanceFields.delete_old_records(self.task_id,self.dag_id)# Export context to make it available for operators to use.airflow_context_vars=context_to_airflow_vars(context,in_env_var_format=True)os.environ.update(airflow_context_vars)# Log context only for the default execution method, the assumption# being that otherwise we're resuming a deferred task (in which# case there's no need to log these again).ifnotself.next_method:self.log.info("Exporting env vars: %s"," ".join(f"{k}={v!r}"fork,vinairflow_context_vars.items()),)# Run pre_execute callback# Is never MappedOperator at this pointself.task.pre_execute(context=context)# type: ignore[union-attr]# Run on_execute callbackself._run_execute_callback(context,self.task)# Run on_task_instance_running eventget_listener_manager().hook.on_task_instance_running(previous_state=TaskInstanceState.QUEUED,task_instance=self,session=session)def_render_map_index(context:Context,*,jinja_env:jinja2.Environment|None)->str|None:"""Render named map index if the DAG author defined map_index_template at the task level."""ifjinja_envisNoneor(template:=context.get("map_index_template"))isNone:returnNonerendered_map_index=jinja_env.from_string(template).render(context)log.debug("Map index rendered as %s",rendered_map_index)returnrendered_map_index# Execute the task.withset_current_context(context):try:result=self._execute_task(context,task_orig)exceptException:# If the task failed, swallow rendering error so it doesn't mask the main error.withcontextlib.suppress(jinja2.TemplateSyntaxError,jinja2.UndefinedError):self.rendered_map_index=_render_map_index(context,jinja_env=jinja_env)raiseelse:# If the task succeeded, render normally to let rendering error bubble up.self.rendered_map_index=_render_map_index(context,jinja_env=jinja_env)# Run post_execute callback# Is never MappedOperator at this pointself.task.post_execute(context=context,result=result)# type: ignore[union-attr]Stats.incr(f"operator_successes_{self.task.task_type}",tags=self.stats_tags)# Same metric with taggingStats.incr("operator_successes",tags={**self.stats_tags,"task_type":self.task.task_type})Stats.incr("ti_successes",tags=self.stats_tags)def_execute_task(self,context,task_orig):""" Execute Task (optionally with a Timeout) and push Xcom results. :param context: Jinja2 context :param task_orig: origin task """return_execute_task(self,context,task_orig)@provide_session
[docs]defdefer_task(self,session:Session,defer:TaskDeferred)->None:"""Mark the task as deferred and sets up the trigger that is needed to resume it. :meta: private """fromairflow.models.triggerimportTriggerifTYPE_CHECKING:assertself.task# First, make the trigger entrytrigger_row=Trigger.from_object(defer.trigger)session.add(trigger_row)session.flush()# Then, update ourselves so it matches the deferral request# Keep an eye on the logic in `check_and_change_state_before_execution()`# depending on self.next_method semanticsself.state=TaskInstanceState.DEFERREDself.trigger_id=trigger_row.idself.next_method=defer.method_nameself.next_kwargs=defer.kwargsor{}# Decrement try number so the next one is the same tryself._try_number-=1# Calculate timeout too if it was passedifdefer.timeoutisnotNone:self.trigger_timeout=timezone.utcnow()+defer.timeoutelse:self.trigger_timeout=None# If an execution_timeout is set, set the timeout to the minimum of# it and the trigger timeoutexecution_timeout=self.task.execution_timeoutifexecution_timeout:ifself.trigger_timeout:self.trigger_timeout=min(self.start_date+execution_timeout,self.trigger_timeout)else:self.trigger_timeout=self.start_date+execution_timeout
def_run_execute_callback(self,context:Context,task:Operator)->None:"""Functions that need to be run before a Task is executed."""callbacks=task.on_execute_callbackifcallbacks:callbacks=callbacksifisinstance(callbacks,list)else[callbacks]forcallbackincallbacks:try:callback(context)exceptException:self.log.exception("Failed when executing execute callback")@provide_session
[docs]defdry_run(self)->None:"""Only Renders Templates for the TI."""ifTYPE_CHECKING:assertself.taskself.task=self.task.prepare_for_execution()self.render_templates()ifTYPE_CHECKING:assertisinstance(self.task,BaseOperator)self.task.dry_run()
@provide_sessiondef_handle_reschedule(self,actual_start_date:datetime,reschedule_exception:AirflowRescheduleException,test_mode:bool=False,session:Session=NEW_SESSION,):# Don't record reschedule request in test modeiftest_mode:returnfromairflow.models.dagrunimportDagRun# Avoid circular importself.refresh_from_db(session)ifTYPE_CHECKING:assertself.taskself.end_date=timezone.utcnow()self.set_duration()# Lock DAG run to be sure not to get into a deadlock situation when trying to insert# TaskReschedule which apparently also creates lock on corresponding DagRun entitywith_row_locks(session.query(DagRun).filter_by(dag_id=self.dag_id,run_id=self.run_id,),session=session,).one()# Log reschedule requestsession.add(TaskReschedule(self.task,self.run_id,self._try_number,actual_start_date,self.end_date,reschedule_exception.reschedule_date,self.map_index,))# set stateself.state=TaskInstanceState.UP_FOR_RESCHEDULE# Decrement try_number so subsequent runs will use the same try number and write# to same log file.self._try_number-=1self.clear_next_method_args()session.merge(self)session.commit()self.log.info("Rescheduling task, marking task as UP_FOR_RESCHEDULE")@staticmethoddefget_truncated_error_traceback(error:BaseException,truncate_to:Callable)->TracebackType|None:""" Truncate the traceback of an exception to the first frame called from within a given function. :param error: exception to get traceback from :param truncate_to: Function to truncate TB to. Must have a ``__code__`` attribute :meta private: """tb=error.__traceback__code=truncate_to.__func__.__code__# type: ignore[attr-defined]whiletbisnotNone:iftb.tb_frame.f_codeiscode:returntb.tb_nexttb=tb.tb_nextreturntborerror.__traceback__@classmethod@internal_api_call@provide_session
[docs]deffetch_handle_failure_context(cls,ti:TaskInstance|TaskInstancePydantic,error:None|str|BaseException,test_mode:bool|None=None,context:Context|None=None,force_fail:bool=False,session:Session=NEW_SESSION,):"""Handle Failure for the TaskInstance."""get_listener_manager().hook.on_task_instance_failed(previous_state=TaskInstanceState.RUNNING,task_instance=ti,session=session)iferror:ifisinstance(error,BaseException):tb=TaskInstance.get_truncated_error_traceback(error,truncate_to=ti._execute_task)cls.logger().error("Task failed with exception",exc_info=(type(error),error,tb))else:cls.logger().error("%s",error)ifnottest_mode:ti.refresh_from_db(session)ti.end_date=timezone.utcnow()ti.set_duration()Stats.incr(f"operator_failures_{ti.operator}",tags=ti.stats_tags)# Same metric with taggingStats.incr("operator_failures",tags={**ti.stats_tags,"operator":ti.operator})Stats.incr("ti_failures",tags=ti.stats_tags)ifnottest_mode:session.add(Log(TaskInstanceState.FAILED.value,ti))# Log failure durationsession.add(TaskFail(ti=ti))ti.clear_next_method_args()# In extreme cases (zombie in case of dag with parse error) we might _not_ have a Task.ifcontextisNoneandgetattr(ti,"task",None):context=ti.get_template_context(session)ifcontextisnotNone:context["exception"]=error# Set state correctly and figure out how to log it and decide whether# to email# Note, callback invocation needs to be handled by caller of# _run_raw_task to avoid race conditions which could lead to duplicate# invocations or miss invocation.# Since this function is called only when the TaskInstance state is running,# try_number contains the current try_number (not the next). We# only mark task instance as FAILED if the next task instance# try_number exceeds the max_tries ... or if force_fail is truthytask:BaseOperator|None=Nonetry:ifgetattr(ti,"task",None)andcontext:ifTYPE_CHECKING:assertti.tasktask=ti.task.unmap((context,session))exceptException:cls.logger().error("Unable to unmap task to determine if we need to send an alert email")ifforce_failornotti.is_eligible_to_retry():ti.state=TaskInstanceState.FAILEDemail_for_state=operator.attrgetter("email_on_failure")callbacks=task.on_failure_callbackiftaskelseNoneiftaskandtask.dagandtask.dag.fail_stop:_stop_remaining_tasks(task_instance=ti,session=session)else:ifti.state==TaskInstanceState.QUEUED:# We increase the try_number to fail the task if it fails to start after sometimeti._try_number+=1ti.state=State.UP_FOR_RETRYemail_for_state=operator.attrgetter("email_on_retry")callbacks=task.on_retry_callbackiftaskelseNonereturn{"ti":ti,"email_for_state":email_for_state,"task":task,"callbacks":callbacks,"context":context,}
[docs]defhandle_failure(self,error:None|str|BaseException,test_mode:bool|None=None,context:Context|None=None,force_fail:bool=False,session:Session=NEW_SESSION,)->None:""" Handle Failure for a task instance. :param error: if specified, log the specific exception if thrown :param session: SQLAlchemy ORM Session :param test_mode: doesn't record success or failure in the DB if True :param context: Jinja2 context :param force_fail: if True, task does not retry """_handle_failure(task_instance=self,error=error,session=session,test_mode=test_mode,context=context,force_fail=force_fail,)
[docs]defis_eligible_to_retry(self):"""Is task instance is eligible for retry."""return_is_eligible_to_retry(task_instance=self)
[docs]defget_template_context(self,session:Session|None=None,ignore_param_exceptions:bool=True,)->Context:""" Return TI Context. :param session: SQLAlchemy ORM Session :param ignore_param_exceptions: flag to suppress value exceptions while initializing the ParamsDict """return_get_template_context(task_instance=self,session=session,ignore_param_exceptions=ignore_param_exceptions,)
@provide_session
[docs]defget_rendered_template_fields(self,session:Session=NEW_SESSION)->None:""" Update task with rendered template fields for presentation in UI. If task has already run, will fetch from DB; otherwise will render. """fromairflow.models.renderedtifieldsimportRenderedTaskInstanceFieldsifTYPE_CHECKING:assertself.taskrendered_task_instance_fields=RenderedTaskInstanceFields.get_templated_fields(self,session=session)ifrendered_task_instance_fields:self.task=self.task.unmap(None)forfield_name,rendered_valueinrendered_task_instance_fields.items():setattr(self.task,field_name,rendered_value)returntry:# If we get here, either the task hasn't run or the RTIF record was purged.fromairflow.utils.log.secrets_maskerimportredactself.render_templates()forfield_nameinself.task.template_fields:rendered_value=getattr(self.task,field_name)setattr(self.task,field_name,redact(rendered_value,field_name))except(TemplateAssertionError,UndefinedError)ase:raiseAirflowException("Webserver does not have access to User-defined Macros or Filters ""when Dag Serialization is enabled. Hence for the task that have not yet ""started running, please use 'airflow tasks render' for debugging the ""rendering of template_fields.")frome
[docs]defoverwrite_params_with_dag_run_conf(self,params:dict,dag_run:DagRun):"""Overwrite Task Params with DagRun.conf."""ifdag_runanddag_run.conf:self.log.debug("Updating task params (%s) with DagRun.conf (%s)",params,dag_run.conf)params.update(dag_run.conf)
[docs]defrender_templates(self,context:Context|None=None,jinja_env:jinja2.Environment|None=None)->Operator:"""Render templates in the operator fields. If the task was originally mapped, this may replace ``self.task`` with the unmapped, fully rendered BaseOperator. The original ``self.task`` before replacement is returned. """ifnotcontext:context=self.get_template_context()original_task=self.taskifTYPE_CHECKING:assertoriginal_task# If self.task is mapped, this call replaces self.task to point to the# unmapped BaseOperator created by this function! This is because the# MappedOperator is useless for template rendering, and we need to be# able to access the unmapped task instead.original_task.render_template_fields(context,jinja_env)returnoriginal_task
[docs]defrender_k8s_pod_yaml(self)->dict|None:"""Render the k8s pod yaml."""try:fromairflow.providers.cncf.kubernetes.template_renderingimport(render_k8s_pod_yamlasrender_k8s_pod_yaml_from_provider,)exceptImportError:raiseRuntimeError("You need to have the `cncf.kubernetes` provider installed to use this feature. ""Also rather than calling it directly you should import ""render_k8s_pod_yaml from airflow.providers.cncf.kubernetes.template_rendering ""and call it with TaskInstance as the first argument.")warnings.warn("You should not call `task_instance.render_k8s_pod_yaml` directly. This method will be removed""in Airflow 3. Rather than calling it directly you should import ""`render_k8s_pod_yaml` from `airflow.providers.cncf.kubernetes.template_rendering` ""and call it with `TaskInstance` as the first argument.",DeprecationWarning,stacklevel=2,)returnrender_k8s_pod_yaml_from_provider(self)
@provide_session
[docs]defget_rendered_k8s_spec(self,session:Session=NEW_SESSION):"""Render the k8s pod yaml."""try:fromairflow.providers.cncf.kubernetes.template_renderingimport(get_rendered_k8s_specasget_rendered_k8s_spec_from_provider,)exceptImportError:raiseRuntimeError("You need to have the `cncf.kubernetes` provider installed to use this feature. ""Also rather than calling it directly you should import ""`get_rendered_k8s_spec` from `airflow.providers.cncf.kubernetes.template_rendering` ""and call it with `TaskInstance` as the first argument.")warnings.warn("You should not call `task_instance.render_k8s_pod_yaml` directly. This method will be removed""in Airflow 3. Rather than calling it directly you should import ""`get_rendered_k8s_spec` from `airflow.providers.cncf.kubernetes.template_rendering` ""and call it with `TaskInstance` as the first argument.",DeprecationWarning,stacklevel=2,)returnget_rendered_k8s_spec_from_provider(self,session=session)
[docs]defget_email_subject_content(self,exception:BaseException,task:BaseOperator|None=None)->tuple[str,str,str]:""" Get the email subject content for exceptions. :param exception: the exception sent in the email :param task: """return_get_email_subject_content(task_instance=self,exception=exception,task=task)
[docs]defemail_alert(self,exception,task:BaseOperator)->None:""" Send alert email with exception information. :param exception: the exception :param task: task related to the exception """_email_alert(task_instance=self,exception=exception,task=task)
[docs]defxcom_push(self,key:str,value:Any,execution_date:datetime|None=None,session:Session=NEW_SESSION,)->None:""" Make an XCom available for tasks to pull. :param key: Key to store the value under. :param value: Value to store. What types are possible depends on whether ``enable_xcom_pickling`` is true or not. If so, this can be any picklable object; only be JSON-serializable may be used otherwise. :param execution_date: Deprecated parameter that has no effect. """ifexecution_dateisnotNone:self_execution_date=self.get_dagrun(session).execution_dateifexecution_date<self_execution_date:raiseValueError(f"execution_date can not be in the past (current execution_date is "f"{self_execution_date}; received {execution_date})")elifexecution_dateisnotNone:message="Passing 'execution_date' to 'TaskInstance.xcom_push()' is deprecated."warnings.warn(message,RemovedInAirflow3Warning,stacklevel=3)XCom.set(key=key,value=value,task_id=self.task_id,dag_id=self.dag_id,run_id=self.run_id,map_index=self.map_index,session=session,)
@provide_session
[docs]defxcom_pull(self,task_ids:str|Iterable[str]|None=None,dag_id:str|None=None,key:str=XCOM_RETURN_KEY,include_prior_dates:bool=False,session:Session=NEW_SESSION,*,map_indexes:int|Iterable[int]|None=None,default:Any=None,)->Any:"""Pull XComs that optionally meet certain criteria. :param key: A key for the XCom. If provided, only XComs with matching keys will be returned. The default key is ``'return_value'``, also available as constant ``XCOM_RETURN_KEY``. This key is automatically given to XComs returned by tasks (as opposed to being pushed manually). To remove the filter, pass *None*. :param task_ids: Only XComs from tasks with matching ids will be pulled. Pass *None* to remove the filter. :param dag_id: If provided, only pulls XComs from this DAG. If *None* (default), the DAG of the calling task is used. :param map_indexes: If provided, only pull XComs with matching indexes. If *None* (default), this is inferred from the task(s) being pulled (see below for details). :param include_prior_dates: If False, only XComs from the current execution_date are returned. If *True*, XComs from previous dates are returned as well. When pulling one single task (``task_id`` is *None* or a str) without specifying ``map_indexes``, the return value is inferred from whether the specified task is mapped. If not, value from the one single task instance is returned. If the task to pull is mapped, an iterator (not a list) yielding XComs from mapped task instances is returned. In either case, ``default`` (*None* if not specified) is returned if no matching XComs are found. When pulling multiple tasks (i.e. either ``task_id`` or ``map_index`` is a non-str iterable), a list of matching XComs is returned. Elements in the list is ordered by item ordering in ``task_id`` and ``map_index``. """ifdag_idisNone:dag_id=self.dag_idquery=XCom.get_many(key=key,run_id=self.run_id,dag_ids=dag_id,task_ids=task_ids,map_indexes=map_indexes,include_prior_dates=include_prior_dates,session=session,)# NOTE: Since we're only fetching the value field and not the whole# class, the @recreate annotation does not kick in. Therefore we need to# call XCom.deserialize_value() manually.# We are only pulling one single task.if(task_idsisNoneorisinstance(task_ids,str))andnotisinstance(map_indexes,Iterable):first=query.with_entities(XCom.run_id,XCom.task_id,XCom.dag_id,XCom.map_index,XCom.value).first()iffirstisNone:# No matching XCom at all.returndefaultifmap_indexesisnotNoneorfirst.map_index<0:returnXCom.deserialize_value(first)query=query.order_by(None).order_by(XCom.map_index.asc())returnLazyXComAccess.build_from_xcom_query(query)# At this point either task_ids or map_indexes is explicitly multi-value.# Order return values to match task_ids and map_indexes ordering.query=query.order_by(None)iftask_idsisNoneorisinstance(task_ids,str):query=query.order_by(XCom.task_id)else:task_id_whens={tid:ifori,tidinenumerate(task_ids)}iftask_id_whens:query=query.order_by(case(task_id_whens,value=XCom.task_id))else:query=query.order_by(XCom.task_id)ifmap_indexesisNoneorisinstance(map_indexes,int):query=query.order_by(XCom.map_index)elifisinstance(map_indexes,range):order=XCom.map_indexifmap_indexes.step<0:order=order.desc()query=query.order_by(order)else:map_index_whens={map_index:ifori,map_indexinenumerate(map_indexes)}ifmap_index_whens:query=query.order_by(case(map_index_whens,value=XCom.map_index))else:query=query.order_by(XCom.map_index)returnLazyXComAccess.build_from_xcom_query(query)
@provide_session
[docs]defget_num_running_task_instances(self,session:Session,same_dagrun:bool=False)->int:"""Return Number of running TIs from the DB."""# .count() is inefficientnum_running_task_instances_query=session.query(func.count()).filter(TaskInstance.dag_id==self.dag_id,TaskInstance.task_id==self.task_id,TaskInstance.state==TaskInstanceState.RUNNING,)ifsame_dagrun:num_running_task_instances_query=num_running_task_instances_query.filter(TaskInstance.run_id==self.run_id)returnnum_running_task_instances_query.scalar()
[docs]definit_run_context(self,raw:bool=False)->None:"""Set the log context."""self.raw=rawself._set_context(self)
@staticmethod
[docs]deffilter_for_tis(tis:Iterable[TaskInstance|TaskInstanceKey])->BooleanClauseList|None:"""Return SQLAlchemy filter to query selected task instances."""# DictKeys type, (what we often pass here from the scheduler) is not directly indexable :(# Or it might be a generator, but we need to be able to iterate over it more than oncetis=list(tis)ifnottis:returnNonefirst=tis[0]dag_id=first.dag_idrun_id=first.run_idmap_index=first.map_indexfirst_task_id=first.task_id# pre-compute the set of dag_id, run_id, map_indices and task_idsdag_ids,run_ids,map_indices,task_ids=set(),set(),set(),set()fortintis:dag_ids.add(t.dag_id)run_ids.add(t.run_id)map_indices.add(t.map_index)task_ids.add(t.task_id)# Common path optimisations: when all TIs are for the same dag_id and run_id, or same dag_id# and task_id -- this can be over 150x faster for huge numbers of TIs (20k+)ifdag_ids=={dag_id}andrun_ids=={run_id}andmap_indices=={map_index}:returnand_(TaskInstance.dag_id==dag_id,TaskInstance.run_id==run_id,TaskInstance.map_index==map_index,TaskInstance.task_id.in_(task_ids),)ifdag_ids=={dag_id}andtask_ids=={first_task_id}andmap_indices=={map_index}:returnand_(TaskInstance.dag_id==dag_id,TaskInstance.run_id.in_(run_ids),TaskInstance.map_index==map_index,TaskInstance.task_id==first_task_id,)ifdag_ids=={dag_id}andrun_ids=={run_id}andtask_ids=={first_task_id}:returnand_(TaskInstance.dag_id==dag_id,TaskInstance.run_id==run_id,TaskInstance.map_index.in_(map_indices),TaskInstance.task_id==first_task_id,)filter_condition=[]# create 2 nested groups, both primarily grouped by dag_id and run_id,# and in the nested group 1 grouped by task_id the other by map_index.task_id_groups:dict[tuple,dict[Any,list[Any]]]=defaultdict(lambda:defaultdict(list))map_index_groups:dict[tuple,dict[Any,list[Any]]]=defaultdict(lambda:defaultdict(list))fortintis:task_id_groups[(t.dag_id,t.run_id)][t.task_id].append(t.map_index)map_index_groups[(t.dag_id,t.run_id)][t.map_index].append(t.task_id)# this assumes that most dags have dag_id as the largest grouping, followed by run_id. even# if its not, this is still a significant optimization over querying for every single tuple keyforcur_dag_id,cur_run_idinitertools.product(dag_ids,run_ids):# we compare the group size between task_id and map_index and use the smaller groupdag_task_id_groups=task_id_groups[(cur_dag_id,cur_run_id)]dag_map_index_groups=map_index_groups[(cur_dag_id,cur_run_id)]iflen(dag_task_id_groups)<=len(dag_map_index_groups):forcur_task_id,cur_map_indicesindag_task_id_groups.items():filter_condition.append(and_(TaskInstance.dag_id==cur_dag_id,TaskInstance.run_id==cur_run_id,TaskInstance.task_id==cur_task_id,TaskInstance.map_index.in_(cur_map_indices),))else:forcur_map_index,cur_task_idsindag_map_index_groups.items():filter_condition.append(and_(TaskInstance.dag_id==cur_dag_id,TaskInstance.run_id==cur_run_id,TaskInstance.task_id.in_(cur_task_ids),TaskInstance.map_index==cur_map_index,))returnor_(*filter_condition)
@classmethoddefti_selector_condition(cls,vals:Collection[str|tuple[str,int]])->ColumnOperators:""" Build an SQLAlchemy filter for a list of task_ids or tuples of (task_id,map_index). :meta private: """# Compute a filter for TI.task_id and TI.map_index based on input values# For each item, it will either be a task_id, or (task_id, map_index)task_id_only=[vforvinvalsifisinstance(v,str)]with_map_index=[vforvinvalsifnotisinstance(v,str)]filters:list[ColumnOperators]=[]iftask_id_only:filters.append(cls.task_id.in_(task_id_only))ifwith_map_index:filters.append(tuple_in_condition((cls.task_id,cls.map_index),with_map_index))ifnotfilters:returnfalse()iflen(filters)==1:returnfilters[0]returnor_(*filters)@classmethod@internal_api_call@provide_sessiondef_schedule_downstream_tasks(cls,ti:TaskInstance|TaskInstancePydantic,session:Session=NEW_SESSION,max_tis_per_query:int|None=None,):fromsqlalchemy.excimportOperationalErrorfromairflow.models.dagrunimportDagRuntry:# Re-select the row with a lockdag_run=with_row_locks(session.query(DagRun).filter_by(dag_id=ti.dag_id,run_id=ti.run_id,),session=session,skip_locked=True,).one_or_none()ifnotdag_run:cls.logger().debug("Skip locked rows, rollback")session.rollback()returntask=ti.taskifTYPE_CHECKING:asserttaskasserttask.dag# Get a partial DAG with just the specific tasks we want to examine.# In order for dep checks to work correctly, we include ourself (so# TriggerRuleDep can check the state of the task we just executed).partial_dag=task.dag.partial_subset(task.downstream_task_ids,include_downstream=True,include_upstream=False,include_direct_upstream=True,)dag_run.dag=partial_daginfo=dag_run.task_instance_scheduling_decisions(session)skippable_task_ids={task_idfortask_idinpartial_dag.task_idsiftask_idnotintask.downstream_task_ids}schedulable_tis=[tifortiininfo.schedulable_tisifti.task_idnotinskippable_task_idsandnot(ti.task.inherits_from_empty_operatorandnotti.task.on_execute_callbackandnotti.task.on_success_callbackandnotti.task.outlets)]forschedulable_tiinschedulable_tis:ifgetattr(schedulable_ti,"task",None)isNone:schedulable_ti.task=task.dag.get_task(schedulable_ti.task_id)num=dag_run.schedule_tis(schedulable_tis,session=session,max_tis_per_query=max_tis_per_query)cls.logger().info("%d downstream tasks scheduled from follow-on schedule check",num)session.flush()exceptOperationalErrorase:# Any kind of DB error here is _non fatal_ as this block is just an optimisation.cls.logger().warning("Skipping mini scheduling run due to exception: %s",e.statement,exc_info=True,)session.rollback()@provide_session
[docs]defschedule_downstream_tasks(self,session:Session=NEW_SESSION,max_tis_per_query:int|None=None):""" Schedule downstream tasks of this task instance. :meta: private """returnTaskInstance._schedule_downstream_tasks(ti=self,session=session,max_tis_per_query=max_tis_per_query)
[docs]defget_relevant_upstream_map_indexes(self,upstream:Operator,ti_count:int|None,*,session:Session,)->int|range|None:"""Infer the map indexes of an upstream "relevant" to this ti. The bulk of the logic mainly exists to solve the problem described by the following example, where 'val' must resolve to different values, depending on where the reference is being used:: @task def this_task(v): # This is self.task. return v * 2 @task_group def tg1(inp): val = upstream(inp) # This is the upstream task. this_task(val) # When inp is 1, val here should resolve to 2. return val # This val is the same object returned by tg1. val = tg1.expand(inp=[1, 2, 3]) @task_group def tg2(inp): another_task(inp, val) # val here should resolve to [2, 4, 6]. tg2.expand(inp=["a", "b"]) The surrounding mapped task groups of ``upstream`` and ``self.task`` are inspected to find a common "ancestor". If such an ancestor is found, we need to return specific map indexes to pull a partial value from upstream XCom. :param upstream: The referenced upstream task. :param ti_count: The total count of task instance this task was expanded by the scheduler, i.e. ``expanded_ti_count`` in the template context. :return: Specific map index or map indexes to pull, or ``None`` if we want to "whole" return value (i.e. no mapped task groups involved). """ifTYPE_CHECKING:assertself.task# This value should never be None since we already know the current task# is in a mapped task group, and should have been expanded, despite that,# we need to check that it is not None to satisfy Mypy.# But this value can be 0 when we expand an empty list, for that it is# necessary to check that ti_count is not 0 to avoid dividing by 0.ifnotti_count:returnNone# Find the innermost common mapped task group between the current task# If the current task and the referenced task does not have a common# mapped task group, the two are in different task mapping contexts# (like another_task above), and we should use the "whole" value.common_ancestor=_find_common_ancestor_mapped_group(self.task,upstream)ifcommon_ancestorisNone:returnNone# At this point we know the two tasks share a mapped task group, and we# should use a "partial" value. Let's break down the mapped ti count# between the ancestor and further expansion happened inside it.ancestor_ti_count=common_ancestor.get_mapped_ti_count(self.run_id,session=session)ancestor_map_index=self.map_index*ancestor_ti_count//ti_count# If the task is NOT further expanded inside the common ancestor, we# only want to reference one single ti. We must walk the actual DAG,# and "ti_count == ancestor_ti_count" does not work, since the further# expansion may be of length 1.ifnot_is_further_mapped_inside(upstream,common_ancestor):returnancestor_map_index# Otherwise we need a partial aggregation for values from selected task# instances in the ancestor's expansion context.further_count=ti_count//ancestor_ti_countmap_index_start=ancestor_map_index*further_countreturnrange(map_index_start,map_index_start+further_count)
defclear_db_references(self,session:Session):""" Clear db tables that have a reference to this instance. :param session: ORM Session :meta private: """fromairflow.models.renderedtifieldsimportRenderedTaskInstanceFieldstables:list[type[TaskInstanceDependencies]]=[TaskFail,TaskInstanceNote,TaskReschedule,XCom,RenderedTaskInstanceFields,TaskMap,]fortableintables:session.execute(delete(table).where(table.dag_id==self.dag_id,table.task_id==self.task_id,table.run_id==self.run_id,table.map_index==self.map_index,))
def_find_common_ancestor_mapped_group(node1:Operator,node2:Operator)->MappedTaskGroup|None:"""Given two operators, find their innermost common mapped task group."""ifnode1.dagisNoneornode2.dagisNoneornode1.dag_id!=node2.dag_id:returnNoneparent_group_ids={g.group_idforginnode1.iter_mapped_task_groups()}common_groups=(gforginnode2.iter_mapped_task_groups()ifg.group_idinparent_group_ids)returnnext(common_groups,None)def_is_further_mapped_inside(operator:Operator,container:TaskGroup)->bool:"""Whether given operator is *further* mapped inside a task group."""ifisinstance(operator,MappedOperator):returnTruetask_group=operator.task_groupwhiletask_groupisnotNoneandtask_group.group_id!=container.group_id:ifisinstance(task_group,MappedTaskGroup):returnTruetask_group=task_group.parent_groupreturnFalse# State of the task instance.# Stores string version of the task state.
[docs]classSimpleTaskInstance:""" Simplified Task Instance. Used to send data between processes via Queues. """def__init__(self,dag_id:str,task_id:str,run_id:str,start_date:datetime|None,end_date:datetime|None,try_number:int,map_index:int,state:str,executor_config:Any,pool:str,queue:str,key:TaskInstanceKey,run_as_user:str|None=None,priority_weight:int|None=None,):self.dag_id=dag_idself.task_id=task_idself.run_id=run_idself.map_index=map_indexself.start_date=start_dateself.end_date=end_dateself.try_number=try_numberself.state=stateself.executor_config=executor_configself.run_as_user=run_as_userself.pool=poolself.priority_weight=priority_weightself.queue=queueself.key=key
[docs]defas_dict(self):warnings.warn("This method is deprecated. Use BaseSerialization.serialize.",RemovedInAirflow3Warning,stacklevel=2,)new_dict=dict(self.__dict__)forkeyinnew_dict:ifkeyin["start_date","end_date"]:val=new_dict[key]ifnotvalorisinstance(val,str):continuenew_dict.update({key:val.isoformat()})returnnew_dict
[docs]deffrom_dict(cls,obj_dict:dict)->SimpleTaskInstance:warnings.warn("This method is deprecated. Use BaseSerialization.deserialize.",RemovedInAirflow3Warning,stacklevel=2,)ti_key=TaskInstanceKey(*obj_dict.pop("key"))start_date=Noneend_date=Nonestart_date_str:str|None=obj_dict.pop("start_date")end_date_str:str|None=obj_dict.pop("end_date")ifstart_date_str:start_date=timezone.parse(start_date_str)ifend_date_str:end_date=timezone.parse(end_date_str)returncls(**obj_dict,start_date=start_date,end_date=end_date,key=ti_key)
[docs]classTaskInstanceNote(TaskInstanceDependencies):"""For storage of arbitrary notes concerning the task instance."""
STATICA_HACK=Trueglobals()["kcah_acitats"[::-1].upper()]=FalseifSTATICA_HACK:# pragma: no coverfromairflow.jobs.jobimportJobTaskInstance.queued_by_job=relationship(Job)