## Licensed to the Apache Software Foundation (ASF) under one# or more contributor license agreements. See the NOTICE file# distributed with this work for additional information# regarding copyright ownership. The ASF licenses this file# to you under the Apache License, Version 2.0 (the# "License"); you may not use this file except in compliance# with the License. You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing,# software distributed under the License is distributed on an# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY# KIND, either express or implied. See the License for the# specific language governing permissions and limitations# under the License.from__future__importannotationsimportfcntlimportimportlibimportinspectimportjsonimportloggingimportosimportpickleimportshutilimportsubprocessimportsysimporttextwrapimporttypesimportwarningsfromabcimportABCMeta,abstractmethodfromcollections.abcimportContainerfrompathlibimportPathfromtempfileimportTemporaryDirectoryfromtypingimportTYPE_CHECKING,Any,Callable,Collection,Iterable,Mapping,NamedTuple,Sequence,castimportdillfromairflow.compat.functoolsimportcachefromairflow.exceptionsimport(AirflowConfigException,AirflowException,AirflowSkipException,DeserializingResultError,RemovedInAirflow3Warning,)fromairflow.models.baseoperatorimportBaseOperatorfromairflow.models.skipmixinimportSkipMixinfromairflow.models.taskinstanceimport_CURRENT_CONTEXTfromairflow.models.variableimportVariablefromairflow.operators.branchimportBranchMixInfromairflow.utilsimporthashlib_wrapperfromairflow.utils.contextimportcontext_copy_partial,context_mergefromairflow.utils.fileimportget_unique_dag_module_namefromairflow.utils.operator_helpersimportKeywordParametersfromairflow.utils.process_utilsimportexecute_in_subprocessfromairflow.utils.python_virtualenvimportprepare_virtualenv,write_python_scriptifTYPE_CHECKING:frompendulum.datetimeimportDateTimefromairflow.utils.contextimportContext
[docs]defis_venv_installed()->bool:""" Check if the virtualenv package is installed via checking if it is on the path or installed as package. :return: True if it is. Whichever way of checking it works, is fine. """ifshutil.which("virtualenv")orimportlib.util.find_spec("virtualenv"):returnTruereturnFalse
[docs]deftask(python_callable:Callable|None=None,multiple_outputs:bool|None=None,**kwargs):"""Use :func:`airflow.decorators.task` instead, this is deprecated. Calls ``@task.python`` and allows users to turn a Python function into an Airflow task. :param python_callable: A reference to an object that is callable :param op_kwargs: a dictionary of keyword arguments that will get unpacked in your function (templated) :param op_args: a list of positional arguments that will get unpacked when calling your callable (templated) :param multiple_outputs: if set, function return value will be unrolled to multiple XCom values. Dict will unroll to xcom values with keys as keys. Defaults to False. """# To maintain backwards compatibility, we import the task object into this file# This prevents breakages in dags that use `from airflow.operators.python import task`fromairflow.decorators.pythonimportpython_taskwarnings.warn("""airflow.operators.python.task is deprecated. Please use the following instead from airflow.decorators import task @task def my_task()""",RemovedInAirflow3Warning,stacklevel=2,)returnpython_task(python_callable=python_callable,multiple_outputs=multiple_outputs,**kwargs)
@cachedef_parse_version_info(text:str)->tuple[int,int,int,str,int]:"""Parse python version info from a text."""parts=text.strip().split(".")iflen(parts)!=5:msg=f"Invalid Python version info, expected 5 components separated by '.', but got {text!r}."raiseValueError(msg)try:returnint(parts[0]),int(parts[1]),int(parts[2]),parts[3],int(parts[4])exceptValueError:msg=f"Unable to convert parts {parts} parsed from {text!r} to (int, int, int, str, int)."raiseValueError(msg)fromNoneclass_PythonVersionInfo(NamedTuple):"""Provide the same interface as ``sys.version_info``."""major:intminor:intmicro:intreleaselevel:strserial:int@classmethoddeffrom_executable(cls,executable:str)->_PythonVersionInfo:"""Parse python version info from an executable."""cmd=[executable,"-c",'import sys; print(".".join(map(str, sys.version_info)))']try:result=subprocess.check_output(cmd,text=True)exceptExceptionase:raiseValueError(f"Error while executing command {cmd}: {e}")returncls(*_parse_version_info(result.strip()))
[docs]classPythonOperator(BaseOperator):""" Executes a Python callable. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:PythonOperator` When running your callable, Airflow will pass a set of keyword arguments that can be used in your function. This set of kwargs correspond exactly to what you can use in your jinja templates. For this to work, you need to define ``**kwargs`` in your function header, or you can add directly the keyword arguments you would like to get - for example with the below code your callable will get the values of ``ti`` and ``next_ds`` context variables. With explicit arguments: .. code-block:: python def my_python_callable(ti, next_ds): pass With kwargs: .. code-block:: python def my_python_callable(**kwargs): ti = kwargs["ti"] next_ds = kwargs["next_ds"] :param python_callable: A reference to an object that is callable :param op_kwargs: a dictionary of keyword arguments that will get unpacked in your function :param op_args: a list of positional arguments that will get unpacked when calling your callable :param templates_dict: a dictionary where the values are templates that will get templated by the Airflow engine sometime between ``__init__`` and ``execute`` takes place and are made available in your callable's context after the template has been applied. (templated) :param templates_exts: a list of file extensions to resolve while processing templated fields, for examples ``['.sql', '.hql']`` :param show_return_value_in_logs: a bool value whether to show return_value logs. Defaults to True, which allows return value log output. It can be set to False to prevent log output of return value when you return huge data such as transmission a large amount of XCom to TaskAPI. """
def__init__(self,*,python_callable:Callable,op_args:Collection[Any]|None=None,op_kwargs:Mapping[str,Any]|None=None,templates_dict:dict[str,Any]|None=None,templates_exts:Sequence[str]|None=None,show_return_value_in_logs:bool=True,**kwargs,)->None:ifkwargs.get("provide_context"):warnings.warn("provide_context is deprecated as of 2.0 and is no longer required",RemovedInAirflow3Warning,stacklevel=2,)kwargs.pop("provide_context",None)super().__init__(**kwargs)ifnotcallable(python_callable):raiseAirflowException("`python_callable` param must be callable")self.python_callable=python_callableself.op_args=op_argsor()self.op_kwargs=op_kwargsor{}self.templates_dict=templates_dictiftemplates_exts:self.template_ext=templates_extsself.show_return_value_in_logs=show_return_value_in_logs
[docs]defexecute(self,context:Context)->Any:context_merge(context,self.op_kwargs,templates_dict=self.templates_dict)self.op_kwargs=self.determine_kwargs(context)return_value=self.execute_callable()ifself.show_return_value_in_logs:self.log.info("Done. Returned value was: %s",return_value)else:self.log.info("Done. Returned value not shown")returnreturn_value
[docs]defexecute_callable(self)->Any:""" Call the python callable with the given arguments. :return: the return value of the call. """returnself.python_callable(*self.op_args,**self.op_kwargs)
[docs]classBranchPythonOperator(PythonOperator,BranchMixIn):""" A workflow can "branch" or follow a path after the execution of this task. It derives the PythonOperator and expects a Python function that returns a single task_id or list of task_ids to follow. The task_id(s) returned should point to a task directly downstream from {self}. All other "branches" or directly downstream tasks are marked with a state of ``skipped`` so that these paths can't move forward. The ``skipped`` states are propagated downstream to allow for the DAG state to fill up and the DAG run's state to be inferred. """
[docs]classShortCircuitOperator(PythonOperator,SkipMixin):""" Allows a pipeline to continue based on the result of a ``python_callable``. The ShortCircuitOperator is derived from the PythonOperator and evaluates the result of a ``python_callable``. If the returned result is False or a falsy value, the pipeline will be short-circuited. Downstream tasks will be marked with a state of "skipped" based on the short-circuiting mode configured. If the returned result is True or a truthy value, downstream tasks proceed as normal and an ``XCom`` of the returned result is pushed. The short-circuiting can be configured to either respect or ignore the ``trigger_rule`` set for downstream tasks. If ``ignore_downstream_trigger_rules`` is set to True, the default setting, all downstream tasks are skipped without considering the ``trigger_rule`` defined for tasks. However, if this parameter is set to False, the direct downstream tasks are skipped but the specified ``trigger_rule`` for other subsequent downstream tasks are respected. In this mode, the operator assumes the direct downstream tasks were purposely meant to be skipped but perhaps not other subsequent tasks. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ShortCircuitOperator` :param ignore_downstream_trigger_rules: If set to True, all downstream tasks from this operator task will be skipped. This is the default behavior. If set to False, the direct, downstream task(s) will be skipped but the ``trigger_rule`` defined for all other downstream tasks will be respected. """def__init__(self,*,ignore_downstream_trigger_rules:bool=True,**kwargs)->None:super().__init__(**kwargs)self.ignore_downstream_trigger_rules=ignore_downstream_trigger_rules
[docs]defexecute(self,context:Context)->Any:condition=super().execute(context)self.log.info("Condition result is %s",condition)ifcondition:self.log.info("Proceeding with downstream tasks...")returnconditionifnotself.downstream_task_ids:self.log.info("No downstream tasks; nothing to do.")returnconditiondag_run=context["dag_run"]defget_tasks_to_skip():ifself.ignore_downstream_trigger_rulesisTrue:tasks=context["task"].get_flat_relatives(upstream=False)else:tasks=context["task"].get_direct_relatives(upstream=False)fortintasks:ifnott.is_teardown:yieldtto_skip=get_tasks_to_skip()# this let's us avoid an intermediate list unless debug loggingifself.log.getEffectiveLevel()<=logging.DEBUG:self.log.debug("Downstream task IDs %s",to_skip:=list(get_tasks_to_skip()))self.log.info("Skipping downstream tasks")self.skip(dag_run=dag_run,execution_date=cast("DateTime",dag_run.execution_date),tasks=to_skip,map_index=context["ti"].map_index,)self.log.info("Done.")# returns the result of the super execute method as it is instead of returning Nonereturncondition
class_BasePythonVirtualenvOperator(PythonOperator,metaclass=ABCMeta):BASE_SERIALIZABLE_CONTEXT_KEYS={"ds","ds_nodash","expanded_ti_count","inlets","map_index_template","next_ds","next_ds_nodash","outlets","prev_ds","prev_ds_nodash","run_id","task_instance_key_str","test_mode","tomorrow_ds","tomorrow_ds_nodash","ts","ts_nodash","ts_nodash_with_tz","yesterday_ds","yesterday_ds_nodash",}PENDULUM_SERIALIZABLE_CONTEXT_KEYS={"data_interval_end","data_interval_start","execution_date","logical_date","next_execution_date","prev_data_interval_end_success","prev_data_interval_start_success","prev_execution_date","prev_execution_date_success","prev_start_date_success","prev_end_date_success",}AIRFLOW_SERIALIZABLE_CONTEXT_KEYS={"macros","conf","dag","dag_run","task","params","triggering_dataset_events",}def__init__(self,*,python_callable:Callable,use_dill:bool=False,op_args:Collection[Any]|None=None,op_kwargs:Mapping[str,Any]|None=None,string_args:Iterable[str]|None=None,templates_dict:dict|None=None,templates_exts:list[str]|None=None,expect_airflow:bool=True,skip_on_exit_code:int|Container[int]|None=None,**kwargs,):if(notisinstance(python_callable,types.FunctionType)orisinstance(python_callable,types.LambdaType)andpython_callable.__name__=="<lambda>"):raiseAirflowException("PythonVirtualenvOperator only supports functions for python_callable arg")super().__init__(python_callable=python_callable,op_args=op_args,op_kwargs=op_kwargs,templates_dict=templates_dict,templates_exts=templates_exts,**kwargs,)self.string_args=string_argsor[]self.use_dill=use_dillself.pickling_library=dillifself.use_dillelsepickleself.expect_airflow=expect_airflowself.skip_on_exit_code=(skip_on_exit_codeifisinstance(skip_on_exit_code,Container)else[skip_on_exit_code]ifskip_on_exit_codeisnotNoneelse[])@abstractmethoddef_iter_serializable_context_keys(self):passdefexecute(self,context:Context)->Any:serializable_keys=set(self._iter_serializable_context_keys())serializable_context=context_copy_partial(context,serializable_keys)returnsuper().execute(context=serializable_context)defget_python_source(self):"""Return the source of self.python_callable."""returntextwrap.dedent(inspect.getsource(self.python_callable))def_write_args(self,file:Path):ifself.op_argsorself.op_kwargs:file.write_bytes(self.pickling_library.dumps({"args":self.op_args,"kwargs":self.op_kwargs}))def_write_string_args(self,file:Path):file.write_text("\n".join(map(str,self.string_args)))def_read_result(self,path:Path):ifpath.stat().st_size==0:returnNonetry:returnself.pickling_library.loads(path.read_bytes())exceptValueErrorasvalue_error:raiseDeserializingResultError()fromvalue_errordef__deepcopy__(self,memo):# module objects can't be copied _at all__memo[id(self.pickling_library)]=self.pickling_libraryreturnsuper().__deepcopy__(memo)def_execute_python_callable_in_subprocess(self,python_path:Path):withTemporaryDirectory(prefix="venv-call")astmp:tmp_dir=Path(tmp)op_kwargs:dict[str,Any]=dict(self.op_kwargs)ifself.templates_dict:op_kwargs["templates_dict"]=self.templates_dictinput_path=tmp_dir/"script.in"output_path=tmp_dir/"script.out"string_args_path=tmp_dir/"string_args.txt"script_path=tmp_dir/"script.py"termination_log_path=tmp_dir/"termination.log"self._write_args(input_path)self._write_string_args(string_args_path)jinja_context={"op_args":self.op_args,"op_kwargs":op_kwargs,"expect_airflow":self.expect_airflow,"pickling_library":self.pickling_library.__name__,"python_callable":self.python_callable.__name__,"python_callable_source":self.get_python_source(),}ifinspect.getfile(self.python_callable)==self.dag.fileloc:jinja_context["modified_dag_module_name"]=get_unique_dag_module_name(self.dag.fileloc)write_python_script(jinja_context=jinja_context,filename=os.fspath(script_path),render_template_as_native_obj=self.dag.render_template_as_native_obj,)try:execute_in_subprocess(cmd=[os.fspath(python_path),os.fspath(script_path),os.fspath(input_path),os.fspath(output_path),os.fspath(string_args_path),os.fspath(termination_log_path),])exceptsubprocess.CalledProcessErrorase:ife.returncodeinself.skip_on_exit_code:raiseAirflowSkipException(f"Process exited with code {e.returncode}. Skipping.")eliftermination_log_path.exists()andtermination_log_path.stat().st_size>0:error_msg=f"Process returned non-zero exit status {e.returncode}.\n"withopen(termination_log_path)asfile:error_msg+=file.read()raiseAirflowException(error_msg)fromNoneelse:raiseif0inself.skip_on_exit_code:raiseAirflowSkipException("Process exited with code 0. Skipping.")returnself._read_result(output_path)defdetermine_kwargs(self,context:Mapping[str,Any])->Mapping[str,Any]:returnKeywordParameters.determine(self.python_callable,self.op_args,context).serializing()
[docs]classPythonVirtualenvOperator(_BasePythonVirtualenvOperator):""" Run a function in a virtualenv that is created and destroyed automatically. The function (has certain caveats) must be defined using def, and not be part of a class. All imports must happen inside the function and no variables outside the scope may be referenced. A global scope variable named virtualenv_string_args will be available (populated by string_args). In addition, one can pass stuff through op_args and op_kwargs, and one can use a return value. Note that if your virtualenv runs in a different Python major version than Airflow, you cannot use return values, op_args, op_kwargs, or use any macros that are being provided to Airflow through plugins. You can use string_args though. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:PythonVirtualenvOperator` :param python_callable: A python function with no references to outside variables, defined with def, which will be run in a virtual environment. :param requirements: Either a list of requirement strings, or a (templated) "requirements file" as specified by pip. :param python_version: The Python version to run the virtual environment with. Note that both 2 and 2.7 are acceptable forms. :param use_dill: Whether to use dill to serialize the args and result (pickle is default). This allow more complex types but requires you to include dill in your requirements. :param system_site_packages: Whether to include system_site_packages in your virtual environment. See virtualenv documentation for more information. :param pip_install_options: a list of pip install options when installing requirements See 'pip install -h' for available options :param op_args: A list of positional arguments to pass to python_callable. :param op_kwargs: A dict of keyword arguments to pass to python_callable. :param string_args: Strings that are present in the global var virtualenv_string_args, available to python_callable at runtime as a list[str]. Note that args are split by newline. :param templates_dict: a dictionary where the values are templates that will get templated by the Airflow engine sometime between ``__init__`` and ``execute`` takes place and are made available in your callable's context after the template has been applied :param templates_exts: a list of file extensions to resolve while processing templated fields, for examples ``['.sql', '.hql']`` :param expect_airflow: expect Airflow to be installed in the target environment. If true, the operator will raise warning if Airflow is not installed, and it will attempt to load Airflow macros when starting. :param skip_on_exit_code: If python_callable exits with this exit code, leave the task in ``skipped`` state (default: None). If set to ``None``, any non-zero exit code will be treated as a failure. :param index_urls: an optional list of index urls to load Python packages from. If not provided the system pip conf will be used to source packages from. :param venv_cache_path: Optional path to the virtual environment parent folder in which the virtual environment will be cached, creates a sub-folder venv-{hash} whereas hash will be replaced with a checksum of requirements. If not provided the virtual environment will be created and deleted in a temp folder for every execution. """
def__init__(self,*,python_callable:Callable,requirements:None|Iterable[str]|str=None,python_version:str|None=None,use_dill:bool=False,system_site_packages:bool=True,pip_install_options:list[str]|None=None,op_args:Collection[Any]|None=None,op_kwargs:Mapping[str,Any]|None=None,string_args:Iterable[str]|None=None,templates_dict:dict|None=None,templates_exts:list[str]|None=None,expect_airflow:bool=True,skip_on_exit_code:int|Container[int]|None=None,index_urls:None|Collection[str]|str=None,venv_cache_path:None|os.PathLike[str]=None,**kwargs,):if(python_versionandstr(python_version)[0]!=str(sys.version_info.major)and(op_argsorop_kwargs)):raiseAirflowException("Passing op_args or op_kwargs is not supported across different Python ""major versions for PythonVirtualenvOperator. Please use string_args."f"Sys version: {sys.version_info}. Virtual environment version: {python_version}")ifpython_versionisnotNoneandnotisinstance(python_version,str):warnings.warn("Passing non-string types (e.g. int or float) as python_version ""is deprecated. Please use string value instead.",RemovedInAirflow3Warning,stacklevel=2,)ifnotis_venv_installed():raiseAirflowException("PythonVirtualenvOperator requires virtualenv, please install it.")ifnotrequirements:self.requirements:list[str]=[]elifisinstance(requirements,str):self.requirements=[requirements]else:self.requirements=list(requirements)self.python_version=python_versionself.system_site_packages=system_site_packagesself.pip_install_options=pip_install_optionsifisinstance(index_urls,str):self.index_urls:list[str]|None=[index_urls]elifisinstance(index_urls,Collection):self.index_urls=list(index_urls)else:self.index_urls=Noneself.venv_cache_path=venv_cache_pathsuper().__init__(python_callable=python_callable,use_dill=use_dill,op_args=op_args,op_kwargs=op_kwargs,string_args=string_args,templates_dict=templates_dict,templates_exts=templates_exts,expect_airflow=expect_airflow,skip_on_exit_code=skip_on_exit_code,**kwargs,)def_requirements_list(self)->list[str]:"""Prepare a list of requirements that need to be installed for the virtual environment."""requirements=[str(dependency)fordependencyinself.requirements]ifnotself.system_site_packagesandself.use_dilland"dill"notinrequirements:requirements.append("dill")requirements.sort()# Ensure a hash is stablereturnrequirementsdef_prepare_venv(self,venv_path:Path)->None:"""Prepare the requirements and installs the virtual environment."""requirements_file=venv_path/"requirements.txt"requirements_file.write_text("\n".join(self._requirements_list()))prepare_virtualenv(venv_directory=str(venv_path),python_bin=f"python{self.python_version}"ifself.python_versionelse"python",system_site_packages=self.system_site_packages,requirements_file_path=str(requirements_file),pip_install_options=self.pip_install_options,index_urls=self.index_urls,)def_calculate_cache_hash(self)->tuple[str,str]:"""Generate the hash of the cache folder to use. The following factors are used as input for the hash: - (sorted) list of requirements - pip install options - flag of system site packages - python version - Variable to override the hash with a cache key - Index URLs Returns a hash and the data dict which is the base for the hash as text. """hash_dict={"requirements_list":self._requirements_list(),"pip_install_options":self.pip_install_options,"index_urls":self.index_urls,"cache_key":str(Variable.get("PythonVirtualenvOperator.cache_key","")),"python_version":self.python_version,"system_site_packages":self.system_site_packages,}hash_text=json.dumps(hash_dict,sort_keys=True)hash_object=hashlib_wrapper.md5(hash_text.encode())requirements_hash=hash_object.hexdigest()returnrequirements_hash[:8],hash_textdef_ensure_venv_cache_exists(self,venv_cache_path:Path)->Path:"""Ensure a valid virtual environment is set up and will create inplace."""cache_hash,hash_data=self._calculate_cache_hash()venv_path=venv_cache_path/f"venv-{cache_hash}"self.log.info("Python virtual environment will be cached in %s",venv_path)venv_path.parent.mkdir(parents=True,exist_ok=True)withopen(f"{venv_path}.lock","w")asf:# Ensure that cache is not build by parallel workersfcntl.flock(f,fcntl.LOCK_EX)hash_marker=venv_path/"install_complete_marker.json"try:ifvenv_path.exists():ifhash_marker.exists():previous_hash_data=hash_marker.read_text(encoding="utf8")ifprevious_hash_data==hash_data:self.log.info("Re-using cached Python virtual environment in %s",venv_path)returnvenv_pathself.log.error("Unicorn alert: Found a previous virtual environment in %s ""with the same hash but different parameters. Previous setup: '%s' / ""Requested venv setup: '%s'. Please report a bug to airflow!",venv_path,previous_hash_data,hash_data,)else:self.log.warning("Found a previous (probably partial installed) virtual environment in %s, ""deleting and re-creating.",venv_path,)shutil.rmtree(venv_path)venv_path.mkdir(parents=True)self._prepare_venv(venv_path)hash_marker.write_text(hash_data,encoding="utf8")exceptExceptionase:shutil.rmtree(venv_path)raiseAirflowException(f"Unable to create new virtual environment in {venv_path}")fromeself.log.info("New Python virtual environment created in %s",venv_path)returnvenv_path
[docs]classBranchPythonVirtualenvOperator(PythonVirtualenvOperator,BranchMixIn):""" A workflow can "branch" or follow a path after the execution of this task in a virtual environment. It derives the PythonVirtualenvOperator and expects a Python function that returns a single task_id or list of task_ids to follow. The task_id(s) returned should point to a task directly downstream from {self}. All other "branches" or directly downstream tasks are marked with a state of ``skipped`` so that these paths can't move forward. The ``skipped`` states are propagated downstream to allow for the DAG state to fill up and the DAG run's state to be inferred. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:BranchPythonVirtualenvOperator` """
[docs]classExternalPythonOperator(_BasePythonVirtualenvOperator):""" Run a function in a virtualenv that is not re-created. Reused as is without the overhead of creating the virtual environment (with certain caveats). The function must be defined using def, and not be part of a class. All imports must happen inside the function and no variables outside the scope may be referenced. A global scope variable named virtualenv_string_args will be available (populated by string_args). In addition, one can pass stuff through op_args and op_kwargs, and one can use a return value. Note that if your virtual environment runs in a different Python major version than Airflow, you cannot use return values, op_args, op_kwargs, or use any macros that are being provided to Airflow through plugins. You can use string_args though. If Airflow is installed in the external environment in different version that the version used by the operator, the operator will fail., .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:ExternalPythonOperator` :param python: Full path string (file-system specific) that points to a Python binary inside a virtual environment that should be used (in ``VENV/bin`` folder). Should be absolute path (so usually start with "/" or "X:/" depending on the filesystem/os used). :param python_callable: A python function with no references to outside variables, defined with def, which will be run in a virtual environment :param use_dill: Whether to use dill to serialize the args and result (pickle is default). This allow more complex types but if dill is not preinstalled in your virtual environment, the task will fail with use_dill enabled. :param op_args: A list of positional arguments to pass to python_callable. :param op_kwargs: A dict of keyword arguments to pass to python_callable. :param string_args: Strings that are present in the global var virtualenv_string_args, available to python_callable at runtime as a list[str]. Note that args are split by newline. :param templates_dict: a dictionary where the values are templates that will get templated by the Airflow engine sometime between ``__init__`` and ``execute`` takes place and are made available in your callable's context after the template has been applied :param templates_exts: a list of file extensions to resolve while processing templated fields, for examples ``['.sql', '.hql']`` :param expect_airflow: expect Airflow to be installed in the target environment. If true, the operator will raise warning if Airflow is not installed, and it will attempt to load Airflow macros when starting. :param skip_on_exit_code: If python_callable exits with this exit code, leave the task in ``skipped`` state (default: None). If set to ``None``, any non-zero exit code will be treated as a failure. """
def__init__(self,*,python:str,python_callable:Callable,use_dill:bool=False,op_args:Collection[Any]|None=None,op_kwargs:Mapping[str,Any]|None=None,string_args:Iterable[str]|None=None,templates_dict:dict|None=None,templates_exts:list[str]|None=None,expect_airflow:bool=True,expect_pendulum:bool=False,skip_on_exit_code:int|Container[int]|None=None,**kwargs,):ifnotpython:raiseValueError("Python Path must be defined in ExternalPythonOperator")self.python=pythonself.expect_pendulum=expect_pendulumsuper().__init__(python_callable=python_callable,use_dill=use_dill,op_args=op_args,op_kwargs=op_kwargs,string_args=string_args,templates_dict=templates_dict,templates_exts=templates_exts,expect_airflow=expect_airflow,skip_on_exit_code=skip_on_exit_code,**kwargs,)
[docs]defexecute_callable(self):python_path=Path(self.python)ifnotpython_path.exists():raiseValueError(f"Python Path '{python_path}' must exists")ifnotpython_path.is_file():raiseValueError(f"Python Path '{python_path}' must be a file")ifnotpython_path.is_absolute():raiseValueError(f"Python Path '{python_path}' must be an absolute path.")python_version=_PythonVersionInfo.from_executable(self.python)ifpython_version.major!=sys.version_info.majorand(self.op_argsorself.op_kwargs):raiseAirflowException("Passing op_args or op_kwargs is not supported across different Python ""major versions for ExternalPythonOperator. Please use string_args."f"Sys version: {sys.version_info}. "f"Virtual environment version: {python_version}")returnself._execute_python_callable_in_subprocess(python_path)
def_iter_serializable_context_keys(self):yield fromself.BASE_SERIALIZABLE_CONTEXT_KEYSifself._get_airflow_version_from_target_env():yield fromself.AIRFLOW_SERIALIZABLE_CONTEXT_KEYSyield fromself.PENDULUM_SERIALIZABLE_CONTEXT_KEYSelifself._is_pendulum_installed_in_target_env():yield fromself.PENDULUM_SERIALIZABLE_CONTEXT_KEYSdef_is_pendulum_installed_in_target_env(self)->bool:try:subprocess.check_call([self.python,"-c","import pendulum"])returnTrueexceptExceptionase:ifself.expect_pendulum:self.log.warning("When checking for Pendulum installed in virtual environment got %s",e)self.log.warning("Pendulum is not properly installed in the virtual environment ""Pendulum context keys will not be available. ""Please Install Pendulum or Airflow in your virtual environment to access them.")returnFalse@propertydef_external_airflow_version_script(self):""" Return python script which determines the version of the Apache Airflow. Import airflow as a module might take a while as a result, obtaining a version would take up to 1 second. On the other hand, `importlib.metadata.version` will retrieve the package version pretty fast something below 100ms; this includes new subprocess overhead. Possible side effect: It might be a situation that `importlib.metadata` is not available (Python < 3.8), as well as backport `importlib_metadata` which might indicate that venv doesn't contain an `apache-airflow` or something wrong with the environment. """returntextwrap.dedent(""" try: from importlib.metadata import version except ImportError: from importlib_metadata import version print(version("apache-airflow")) """)def_get_airflow_version_from_target_env(self)->str|None:fromairflowimport__version__asairflow_versiontry:result=subprocess.check_output([self.python,"-c",self._external_airflow_version_script],text=True,)target_airflow_version=result.strip()iftarget_airflow_version!=airflow_version:raiseAirflowConfigException(f"The version of Airflow installed for the {self.python} "f"({target_airflow_version}) is different than the runtime Airflow version: "f"{airflow_version}. Make sure your environment has the same Airflow version "f"installed as the Airflow runtime.")returntarget_airflow_versionexceptExceptionase:ifself.expect_airflow:self.log.warning("When checking for Airflow installed in virtual environment got %s",e)self.log.warning("This means that Airflow is not properly installed by %s. ""Airflow context keys will not be available. ""Please Install Airflow %s in your environment to access them.",self.python,airflow_version,)returnNone
[docs]classBranchExternalPythonOperator(ExternalPythonOperator,BranchMixIn):""" A workflow can "branch" or follow a path after the execution of this task. Extends ExternalPythonOperator, so expects to get Python: virtual environment that should be used (in ``VENV/bin`` folder). Should be absolute path, so it can run on separate virtual environment similarly to ExternalPythonOperator. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:BranchExternalPythonOperator` """
[docs]defget_current_context()->Context:""" Retrieve the execution context dictionary without altering user method's signature. This is the simplest method of retrieving the execution context dictionary. **Old style:** .. code:: python def my_task(**context): ti = context["ti"] **New style:** .. code:: python from airflow.operators.python import get_current_context def my_task(): context = get_current_context() ti = context["ti"] Current context will only have value if this method was called after an operator was starting to execute. """ifnot_CURRENT_CONTEXT:raiseAirflowException("Current context was requested but no context was found! ""Are you running within an airflow task?")return_CURRENT_CONTEXT[-1]