Callbacks

A valuable component of logging and monitoring is the use of task callbacks to act upon changes in state of a given task, or across all tasks in a given DAG. For example, you may wish to alert when certain tasks have failed, or have the last task in your DAG invoke a callback when it succeeds.

Note

Callback functions are only invoked when the task state changes due to execution by a worker. As such, task changes set by the command line interface (CLI) or user interface (UI) do not execute callback functions.

Callback Types

There are four types of task events that can trigger a callback:

Name

Description

on_success_callback

Invoked when the task succeeds

on_failure_callback

Invoked when the task fails

sla_miss_callback

Invoked when a task misses its defined SLA

on_retry_callback

Invoked when the task is up for retry

Example

In the following example, failures in any task call the task_failure_alert function, and success in the last task calls the dag_success_alert function:

import datetime
import pendulum

from airflow import DAG
from airflow.operators.dummy import DummyOperator


def task_failure_alert(context):
    print(f"Task has failed, task_instance_key_str: {context['task_instance_key_str']}")


def dag_success_alert(context):
    print(f"DAG has succeeded, run_id: {context['run_id']}")


with DAG(
    dag_id="example_callback",
    schedule_interval=None,
    start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
    dagrun_timeout=datetime.timedelta(minutes=60),
    catchup=False,
    on_success_callback=None,
    on_failure_callback=task_failure_alert,
    tags=["example"],
) as dag:

    task1 = DummyOperator(task_id="task1")
    task2 = DummyOperator(task_id="task2")
    task3 = DummyOperator(task_id="task3", on_success_callback=dag_success_alert)
    task1 >> task2 >> task3

Was this entry helpful?