Params¶
Params are how Airflow provides runtime configuration to tasks. When you trigger a DAG manually, you can modify its Params before the dagrun starts. If the user-supplied values don’t pass validation, Airflow shows a warning instead of creating the dagrun. (For scheduled runs, the default values are used.)
Adding Params to a DAG¶
To add Params to a DAG
, initialize it with the params
kwarg.
Use a dictionary that maps Param names to a either a Param
or an object indicating the parameter’s default value.
from airflow import DAG
from airflow.models.param import Param
with DAG(
"the_dag",
params={
"x": Param(5, type="integer", minimum=3),
"y": 6
},
) as the_dag:
Referencing Params in a Task¶
Params are stored as params
in the template context.
So you can reference them in a template.
PythonOperator(
task_id="from_template",
op_args=[
"{{ params.int_param + 10 }}",
],
python_callable=(
lambda x: print(x)
),
)
Even though Params can use a variety of types, the default behavior of templates is to provide your task with a string.
You can change this by setting render_template_as_native_obj=True
while initializing the DAG
.
with DAG(
"the_dag",
params={"x": Param(5, type="integer", minimum=3)},
render_template_as_native_obj=True
) as the_dag:
This way, the Param’s type is respected when its provided to your task.
# prints <class 'str'> by default
# prints <class 'int'> if render_template_as_native_obj=True
PythonOperator(
task_id="template_type",
op_args=[
"{{ params.int_param }}",
],
python_callable=(
lambda x: print(type(x))
),
)
Another way to access your param is via a task’s context
kwarg.
def print_x(**context):
print(context["params"]["x"])
PythonOperator(
task_id="print_x",
python_callable=print_it,
)
Task-level Params¶
You can also add Params to individual tasks.
PythonOperator(
task_id="print_x",
params={"x": 10},
python_callable=print_it,
)
If there’s already a dag param with that name, the task-level default will take precedence over the dag-level default. If a user supplies their own value when the DAG was triggered, Airflow ignores all defaults and uses the user’s value.
JSON Schema Validation¶
Param
makes use of json-schema <https://json-schema.org/>
, so you can use the full json-schema specifications mentioned at https://json-schema.org/draft/2020-12/json-schema-validation.html to define Param
objects.
with DAG(
"my_dag",
params={
# a int with a default value
"int_param": Param(10, type="integer", minimum=0, maximum=20),
# a required param which can be of multiple types
"dummy": Param(type=["null", "number", "string"]),
# an enum param, must be one of three values
"enum_param": Param("foo", enum=["foo", "bar", 42]),
# a param which uses json-schema formatting
"email": Param(
default="example@example.com",
type="string",
format="idn-email",
minLength=5,
maxLength=255,
),
},
) as my_dag:
Note
As of now, for security reasons, one can not use Param objects derived out of custom classes. We are planning to have a registration system for custom Param classes, just like we’ve for Operator ExtraLinks.
Disabling Runtime Param Modification¶
The ability to update params while triggering a DAG depends on the flag core.dag_run_conf_overrides_params
.
Setting this config to False
will effectively turn your default params into constants.