# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import math
import os
import subprocess
import time
import traceback
from multiprocessing import Pool, cpu_count
from celery import Celery
from celery import states as celery_states
from airflow.configuration import conf
from airflow.config_templates.default_celery import DEFAULT_CELERY_CONFIG
from airflow.exceptions import AirflowException
from airflow.executors.base_executor import BaseExecutor
from airflow.utils.log.logging_mixin import LoggingMixin
from airflow.utils.module_loading import import_string
from airflow.utils.timeout import timeout
# Make it constant for unit test.
[docs]OPERATION_TIMEOUT = conf.getint('celery', 'operation_timeout', fallback=2)
'''
To start the celery worker, run the command:
airflow worker
'''
if conf.has_option('celery', 'celery_config_options'):
[docs] celery_configuration = import_string(
conf.get('celery', 'celery_config_options')
)
else:
celery_configuration = DEFAULT_CELERY_CONFIG
[docs]app = Celery(
conf.get('celery', 'CELERY_APP_NAME'),
config_source=celery_configuration)
@app.task
[docs]def execute_command(command_to_exec):
log = LoggingMixin().log
log.info("Executing command in Celery: %s", command_to_exec)
env = os.environ.copy()
try:
subprocess.check_call(command_to_exec, stderr=subprocess.STDOUT,
close_fds=True, env=env)
except subprocess.CalledProcessError as e:
log.exception('execute_command encountered a CalledProcessError')
log.error(e.output)
raise AirflowException('Celery command failed')
[docs]class ExceptionWithTraceback(object):
"""
Wrapper class used to propagate exceptions to parent processes from subprocesses.
:param exception: The exception to wrap
:type exception: Exception
:param exception_traceback: The stacktrace to wrap
:type exception_traceback: str
"""
def __init__(self, exception, exception_traceback):
self.exception = exception
self.traceback = exception_traceback
[docs]def fetch_celery_task_state(celery_task):
"""
Fetch and return the state of the given celery task. The scope of this function is
global so that it can be called by subprocesses in the pool.
:param celery_task: a tuple of the Celery task key and the async Celery object used
to fetch the task's state
:type celery_task: tuple(str, celery.result.AsyncResult)
:return: a tuple of the Celery task key and the Celery state of the task
:rtype: tuple[str, str]
"""
try:
with timeout(seconds=OPERATION_TIMEOUT):
# Accessing state property of celery task will make actual network request
# to get the current state of the task.
res = (celery_task[0], celery_task[1].state)
except Exception as e:
exception_traceback = "Celery Task ID: {}\n{}".format(celery_task[0],
traceback.format_exc())
res = ExceptionWithTraceback(e, exception_traceback)
return res
[docs]def send_task_to_executor(task_tuple):
key, simple_ti, command, queue, task = task_tuple
try:
with timeout(seconds=OPERATION_TIMEOUT):
result = task.apply_async(args=[command], queue=queue)
except Exception as e:
exception_traceback = "Celery Task ID: {}\n{}".format(key,
traceback.format_exc())
result = ExceptionWithTraceback(e, exception_traceback)
return key, command, result
[docs]class CeleryExecutor(BaseExecutor):
"""
CeleryExecutor is recommended for production use of Airflow. It allows
distributing the execution of task instances to multiple worker nodes.
Celery is a simple, flexible and reliable distributed system to process
vast amounts of messages, while providing operations with the tools
required to maintain such a system.
"""
def __init__(self):
super(CeleryExecutor, self).__init__()
# Celery doesn't support querying the state of multiple tasks in parallel
# (which can become a bottleneck on bigger clusters) so we use
# a multiprocessing pool to speed this up.
# How many worker processes are created for checking celery task state.
self._sync_parallelism = conf.getint('celery', 'SYNC_PARALLELISM')
if self._sync_parallelism == 0:
self._sync_parallelism = max(1, cpu_count() - 1)
self._sync_pool = None
self.tasks = {}
self.last_state = {}
[docs] def start(self):
self.log.debug(
'Starting Celery Executor using %s processes for syncing',
self._sync_parallelism
)
[docs] def _num_tasks_per_send_process(self, to_send_count):
"""
How many Celery tasks should each worker process send.
:return: Number of tasks that should be sent per process
:rtype: int
"""
return max(1,
int(math.ceil(1.0 * to_send_count / self._sync_parallelism)))
[docs] def _num_tasks_per_fetch_process(self):
"""
How many Celery tasks should be sent to each worker process.
:return: Number of tasks that should be used per process
:rtype: int
"""
return max(1,
int(math.ceil(1.0 * len(self.tasks) / self._sync_parallelism)))
[docs] def trigger_tasks(self, open_slots):
"""
Overwrite trigger_tasks function from BaseExecutor
:param open_slots: Number of open slots
:return:
"""
sorted_queue = sorted(
[(k, v) for k, v in self.queued_tasks.items()],
key=lambda x: x[1][1],
reverse=True)
task_tuples_to_send = []
for i in range(min((open_slots, len(self.queued_tasks)))):
key, (command, _, queue, simple_ti) = sorted_queue.pop(0)
task_tuples_to_send.append((key, simple_ti, command, queue,
execute_command))
cached_celery_backend = None
if task_tuples_to_send:
tasks = [t[4] for t in task_tuples_to_send]
# Celery state queries will stuck if we do not use one same backend
# for all tasks.
cached_celery_backend = tasks[0].backend
if task_tuples_to_send:
# Use chunking instead of a work queue to reduce context switching
# since tasks are roughly uniform in size
chunksize = self._num_tasks_per_send_process(len(task_tuples_to_send))
num_processes = min(len(task_tuples_to_send), self._sync_parallelism)
send_pool = Pool(processes=num_processes)
key_and_async_results = send_pool.map(
send_task_to_executor,
task_tuples_to_send,
chunksize=chunksize)
send_pool.close()
send_pool.join()
self.log.debug('Sent all tasks.')
for key, command, result in key_and_async_results:
if isinstance(result, ExceptionWithTraceback):
self.log.error(
CELERY_SEND_ERR_MSG_HEADER + ":%s\n%s\n", result.exception, result.traceback
)
elif result is not None:
# Only pops when enqueued successfully, otherwise keep it
# and expect scheduler loop to deal with it.
self.queued_tasks.pop(key)
result.backend = cached_celery_backend
self.running[key] = command
self.tasks[key] = result
self.last_state[key] = celery_states.PENDING
[docs] def sync(self):
num_processes = min(len(self.tasks), self._sync_parallelism)
if num_processes == 0:
self.log.debug("No task to query celery, skipping sync")
return
self.log.debug("Inquiring about %s celery task(s) using %s processes",
len(self.tasks), num_processes)
# Recreate the process pool each sync in case processes in the pool die
self._sync_pool = Pool(processes=num_processes)
# Use chunking instead of a work queue to reduce context switching since tasks are
# roughly uniform in size
chunksize = self._num_tasks_per_fetch_process()
self.log.debug("Waiting for inquiries to complete...")
task_keys_to_states = self._sync_pool.map(
fetch_celery_task_state,
self.tasks.items(),
chunksize=chunksize)
self._sync_pool.close()
self._sync_pool.join()
self.log.debug("Inquiries completed.")
for key_and_state in task_keys_to_states:
if isinstance(key_and_state, ExceptionWithTraceback):
self.log.error(
CELERY_FETCH_ERR_MSG_HEADER + ", ignoring it:%s\n%s\n",
repr(key_and_state.exception), key_and_state.traceback
)
continue
key, state = key_and_state
try:
if self.last_state[key] != state:
if state == celery_states.SUCCESS:
self.success(key)
del self.tasks[key]
del self.last_state[key]
elif state == celery_states.FAILURE:
self.fail(key)
del self.tasks[key]
del self.last_state[key]
elif state == celery_states.REVOKED:
self.fail(key)
del self.tasks[key]
del self.last_state[key]
else:
self.log.info("Unexpected state: %s", state)
self.last_state[key] = state
except Exception:
self.log.exception("Error syncing the Celery executor, ignoring it.")
[docs] def end(self, synchronous=False):
if synchronous:
while any([
task.state not in celery_states.READY_STATES
for task in self.tasks.values()]):
time.sleep(5)
self.sync()