airflow.hooks.hive_hooks
¶
Module Contents¶
-
airflow.hooks.hive_hooks.
HIVE_QUEUE_PRIORITIES
= ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'][source]¶
-
airflow.hooks.hive_hooks.
get_context_from_env_var
()[source]¶ -
Extract context from env variable, e.g. dag_id, task_id and execution_date,
-
so that they can be used inside BashOperator and PythonOperator.
- Returns
The context of interest.
-
class
airflow.hooks.hive_hooks.
HiveCliHook
(hive_cli_conn_id='hive_cli_default', run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None)[source]¶ Bases:
airflow.hooks.base_hook.BaseHook
Simple wrapper around the hive CLI.
It also supports the
beeline
a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enablebeeline
, set the use_beeline param in the extra field of your connection as in{ "use_beeline": true }
Note that you can also set default hive CLI parameters using the
hive_cli_params
to be used in your connection as in{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}
Parameters passed here can be overridden by run_cli’s hive_conf paramThe extra connection parameter
auth
gets passed as in thejdbc
connection string as is.- Parameters
-
_get_proxy_user
(self)[source]¶ This function set the proper proxy_user value in case the user overwtire the default.
-
static
_prepare_hiveconf
(d)[source]¶ This function prepares a list of hiveconf params from a dictionary of key value pairs.
- Parameters
d (dict) –
>>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true", "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"]
-
run_cli
(self, hql, schema=None, verbose=True, hive_conf=None)[source]¶ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf
- Parameters
hive_conf (dict) – if specified these key value pairs will be passed to hive as
-hiveconf "key"="value"
. Note that they will be passed after thehive_cli_params
and thus will override whatever values are specified in the database.
>>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True
-
load_df
(self, df, table, field_dict=None, delimiter=', ', encoding='utf8', pandas_kwargs=None, **kwargs)[source]¶ Loads a pandas DataFrame into hive.
Hive data types will be inferred if not passed but column names will not be sanitized.
- Parameters
df (pandas.DataFrame) – DataFrame to load into a Hive table
table (str) – target Hive table, use dot notation to target a specific database
field_dict (collections.OrderedDict) – mapping from column name to hive data type. Note that it must be OrderedDict so as to keep columns’ order.
delimiter (str) – field delimiter in the file
encoding (str) – str encoding to use when writing DataFrame to file
pandas_kwargs (dict) – passed to DataFrame.to_csv
kwargs – passed to self.load_file
-
load_file
(self, filepath, table, delimiter=', ', field_dict=None, create=True, overwrite=True, partition=None, recreate=False, tblproperties=None)[source]¶ Loads a local file into Hive
Note that the table generated in Hive uses
STORED AS textfile
which isn’t the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using aHiveOperator
.- Parameters
filepath (str) – local filepath of the file to load
table (str) – target Hive table, use dot notation to target a specific database
delimiter (str) – field delimiter in the file
field_dict (collections.OrderedDict) – A dictionary of the fields name in the file as keys and their Hive types as values. Note that it must be OrderedDict so as to keep columns’ order.
create (bool) – whether to create the table if it doesn’t exist
overwrite (bool) – whether to overwrite the data in table or partition
partition (dict) – target partition as a dict of partition columns and values
recreate (bool) – whether to drop and recreate the table at every execution
tblproperties (dict) – TBLPROPERTIES of the hive table being created
-
class
airflow.hooks.hive_hooks.
HiveMetastoreHook
(metastore_conn_id='metastore_default')[source]¶ Bases:
airflow.hooks.base_hook.BaseHook
Wrapper to interact with the Hive Metastore
-
check_for_partition
(self, schema, table, partition)[source]¶ Checks whether a partition exists
- Parameters
schema (str) – Name of hive schema (database) @table belongs to
table – Name of hive table @partition belongs to
- Partition
Expression that matches the partitions to check for (eg a = ‘b’ AND c = ‘d’)
- Return type
>>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True
-
check_for_named_partition
(self, schema, table, partition_name)[source]¶ Checks whether a partition with a given name exists
- Parameters
schema (str) – Name of hive schema (database) @table belongs to
table – Name of hive table @partition belongs to
- Partition
Name of the partitions to check for (eg a=b/c=d)
- Return type
>>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False
-
get_table
(self, table_name, db='default')[source]¶ Get a metastore table object
>>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num']
-
get_partitions
(self, schema, table_name, filter=None)[source]¶ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this.
>>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}]
-
static
_get_max_partition_from_part_specs
(part_specs, partition_key, filter_map)[source]¶ Helper method to get max partition of partitions with partition_key from part specs. key:value pair in filter_map will be used to filter out partitions.
- Parameters
part_specs (list) – list of partition specs.
partition_key (str) – partition key name.
filter_map (map) – partition_key:partition_value map used for partition filtering, e.g. {‘key1’: ‘value1’, ‘key2’: ‘value2’}. Only partitions matching all partition_key:partition_value pairs will be considered as candidates of max partition.
- Returns
Max partition or None if part_specs is empty.
-
max_partition
(self, schema, table_name, field=None, filter_map=None)[source]¶ Returns the maximum value for all partitions with given field in a table. If only one partition key exist in the table, the key will be used as field. filter_map should be a partition_key:partition_value map and will be used to filter out partitions.
- Parameters
>>> hh = HiveMetastoreHook() >>> filter_map = {'ds': '2015-01-01', 'ds': '2014-01-01'} >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow', ... table_name=t, field='ds', filter_map=filter_map) '2015-01-01'
-
-
class
airflow.hooks.hive_hooks.
HiveServer2Hook
(hiveserver2_conn_id='hiveserver2_default')[source]¶ Bases:
airflow.hooks.base_hook.BaseHook
Wrapper around the pyhive library
Notes: * the default authMechanism is PLAIN, to override it you can specify it in the
extra
of your connection in the UI * the default for run_set_variable_statements is true, if you are using impala you may need to set it to false in theextra
of your connection in the UI-
get_results
(self, hql, schema='default', fetch_size=None, hive_conf=None)[source]¶ Get results of the provided hql in target schema.
- Parameters
- Returns
results of hql execution, dict with data (list of results) and header
- Return type
-
to_csv
(self, hql, csv_filepath, schema='default', delimiter=', ', lineterminator='rn', output_header=True, fetch_size=1000, hive_conf=None)[source]¶ Execute hql in target schema and write results to a csv file.
- Parameters
csv_filepath (str) – filepath of csv to write results into.
schema (str) – target schema, default to ‘default’.
delimiter (str) – delimiter of the csv file, default to ‘,’.
lineterminator (str) – lineterminator of the csv file.
output_header (bool) – header of the csv file, default to True.
fetch_size (int) – number of result rows to write into the csv file, default to 1000.
hive_conf (dict) – hive_conf to execute alone with the hql.
-
get_records
(self, hql, schema='default')[source]¶ Get a set of records from a Hive query.
- Parameters
- Returns
result of hive execution
- Return type
>>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100
-
get_pandas_df
(self, hql, schema='default')[source]¶ Get a pandas dataframe from a Hive query
- Parameters
- Returns
result of hql execution
- Return type
DataFrame
>>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100
- Returns
pandas.DateFrame
-