airflow.contrib.operators.databricks_operator

Module Contents

airflow.contrib.operators.databricks_operator.XCOM_RUN_ID_KEY = run_id[source]
airflow.contrib.operators.databricks_operator.XCOM_RUN_PAGE_URL_KEY = run_page_url[source]
airflow.contrib.operators.databricks_operator._deep_string_coerce(content, json_path='json')[source]
Coerces content or all values of content if it is a dict to a string. The
function will throw if content contains non-string or non-numeric types.

The reason why we have this function is because the self.json field must be a dict with only string values. This is because render_template will fail for numerical values.

airflow.contrib.operators.databricks_operator._handle_databricks_operator_execution(operator, hook, log, context)[source]
Handles the Airflow + Databricks lifecycle logic for a Databricks operator
Parameters
  • operator – Databricks operator being handled

  • context – Airflow context

class airflow.contrib.operators.databricks_operator.DatabricksSubmitRunOperator(json=None, spark_jar_task=None, notebook_task=None, new_cluster=None, existing_cluster_id=None, libraries=None, run_name=None, timeout_seconds=None, databricks_conn_id='databricks_default', polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, do_xcom_push=False, **kwargs)[source]

Bases: airflow.models.BaseOperator

Submits a Spark job run to Databricks using the api/2.0/jobs/runs/submit API endpoint.

There are two ways to instantiate this operator.

In the first way, you can take the JSON payload that you typically use to call the api/2.0/jobs/runs/submit endpoint and pass it directly to our DatabricksSubmitRunOperator through the json parameter. For example

json = {
  'new_cluster': {
    'spark_version': '2.1.0-db3-scala2.11',
    'num_workers': 2
  },
  'notebook_task': {
    'notebook_path': '/Users/airflow@example.com/PrepareData',
  },
}
notebook_run = DatabricksSubmitRunOperator(task_id='notebook_run', json=json)

Another way to accomplish the same thing is to use the named parameters of the DatabricksSubmitRunOperator directly. Note that there is exactly one named parameter for each top level parameter in the runs/submit endpoint. In this method, your code would look like this:

new_cluster = {
  'spark_version': '2.1.0-db3-scala2.11',
  'num_workers': 2
}
notebook_task = {
  'notebook_path': '/Users/airflow@example.com/PrepareData',
}
notebook_run = DatabricksSubmitRunOperator(
    task_id='notebook_run',
    new_cluster=new_cluster,
    notebook_task=notebook_task)

In the case where both the json parameter AND the named parameters are provided, they will be merged together. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys.

Currently the named parameters that DatabricksSubmitRunOperator supports are
  • spark_jar_task

  • notebook_task

  • new_cluster

  • existing_cluster_id

  • libraries

  • run_name

  • timeout_seconds

Parameters
  • json (dict) –

    A JSON object containing API parameters which will be passed directly to the api/2.0/jobs/runs/submit endpoint. The other named parameters (i.e. spark_jar_task, notebook_task..) to this operator will be merged with this json dictionary if they are provided. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys. (templated)

    See also

    For more information about templating see Jinja Templating. https://docs.databricks.com/api/latest/jobs.html#runs-submit

  • spark_jar_task (dict) –

    The main class and parameters for the JAR task. Note that the actual JAR is specified in the libraries. EITHER spark_jar_task OR notebook_task should be specified. This field will be templated.

  • notebook_task (dict) –

    The notebook path and parameters for the notebook task. EITHER spark_jar_task OR notebook_task should be specified. This field will be templated.

  • new_cluster (dict) –

    Specs for a new cluster on which this task will be run. EITHER new_cluster OR existing_cluster_id should be specified. This field will be templated.

  • existing_cluster_id (str) – ID for existing cluster on which to run this task. EITHER new_cluster OR existing_cluster_id should be specified. This field will be templated.

  • libraries (list of dicts) –

    Libraries which this run will use. This field will be templated.

  • run_name (str) – The run name used for this task. By default this will be set to the Airflow task_id. This task_id is a required parameter of the superclass BaseOperator. This field will be templated.

  • timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used which means to have no timeout. This field will be templated.

  • databricks_conn_id (str) – The name of the Airflow connection to use. By default and in the common case this will be databricks_default. To use token based authentication, provide the key token in the extra field for the connection and create the key host and leave the host field empty.

  • polling_period_seconds (int) – Controls the rate which we poll for the result of this run. By default the operator will poll every 30 seconds.

  • databricks_retry_limit (int) – Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.

  • databricks_retry_delay (float) – Number of seconds to wait between retries (it might be a floating point number).

  • do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.

template_fields = ['json'][source]
ui_color = #1CB1C2[source]
ui_fgcolor = #fff[source]
get_hook(self)[source]
execute(self, context)[source]
on_kill(self)[source]
class airflow.contrib.operators.databricks_operator.DatabricksRunNowOperator(job_id, json=None, notebook_params=None, python_params=None, spark_submit_params=None, databricks_conn_id='databricks_default', polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, do_xcom_push=False, **kwargs)[source]

Bases: airflow.models.BaseOperator

Runs an existing Spark job run to Databricks using the api/2.0/jobs/run-now API endpoint.

There are two ways to instantiate this operator.

In the first way, you can take the JSON payload that you typically use to call the api/2.0/jobs/run-now endpoint and pass it directly to our DatabricksRunNowOperator through the json parameter. For example

json = {
  "job_id": 42,
  "notebook_params": {
    "dry-run": "true",
    "oldest-time-to-consider": "1457570074236"
  }
}

notebook_run = DatabricksRunNowOperator(task_id='notebook_run', json=json)

Another way to accomplish the same thing is to use the named parameters of the DatabricksRunNowOperator directly. Note that there is exactly one named parameter for each top level parameter in the run-now endpoint. In this method, your code would look like this:

job_id=42

notebook_params = {
    "dry-run": "true",
    "oldest-time-to-consider": "1457570074236"
}

python_params = ["douglas adams", "42"]

spark_submit_params = ["--class", "org.apache.spark.examples.SparkPi"]

notebook_run = DatabricksRunNowOperator(
    job_id=job_id,
    notebook_params=notebook_params,
    python_params=python_params,
    spark_submit_params=spark_submit_params
)

In the case where both the json parameter AND the named parameters are provided, they will be merged together. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys.

Currently the named parameters that DatabricksRunNowOperator supports are
  • job_id

  • json

  • notebook_params

  • python_params

  • spark_submit_params

Parameters
  • job_id (str) –

    the job_id of the existing Databricks job. This field will be templated.

  • json (dict) –

    A JSON object containing API parameters which will be passed directly to the api/2.0/jobs/run-now endpoint. The other named parameters (i.e. notebook_params, spark_submit_params..) to this operator will be merged with this json dictionary if they are provided. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys. (templated)

    See also

    For more information about templating see Jinja Templating. https://docs.databricks.com/api/latest/jobs.html#run-now

  • notebook_params (dict) –

    A dict from keys to values for jobs with notebook task, e.g. “notebook_params”: {“name”: “john doe”, “age”: “35”}. The map is passed to the notebook and will be accessible through the dbutils.widgets.get function. See Widgets for more information. If not specified upon run-now, the triggered run will use the job’s base parameters. notebook_params cannot be specified in conjunction with jar_params. The json representation of this field (i.e. {“notebook_params”:{“name”:”john doe”,”age”:”35”}}) cannot exceed 10,000 bytes. This field will be templated.

  • python_params (list[str]) –

    A list of parameters for jobs with python tasks, e.g. “python_params”: [“john doe”, “35”]. The parameters will be passed to python file as command line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The json representation of this field (i.e. {“python_params”:[“john doe”,”35”]}) cannot exceed 10,000 bytes. This field will be templated.

  • spark_submit_params (list[str]) –

    A list of parameters for jobs with spark submit task, e.g. “spark_submit_params”: [“–class”, “org.apache.spark.examples.SparkPi”]. The parameters will be passed to spark-submit script as command line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The json representation of this field cannot exceed 10,000 bytes. This field will be templated.

  • timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used which means to have no timeout. This field will be templated.

  • databricks_conn_id (str) – The name of the Airflow connection to use. By default and in the common case this will be databricks_default. To use token based authentication, provide the key token in the extra field for the connection and create the key host and leave the host field empty.

  • polling_period_seconds (int) – Controls the rate which we poll for the result of this run. By default the operator will poll every 30 seconds.

  • databricks_retry_limit (int) – Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.

  • do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.

template_fields = ['json'][source]
ui_color = #1CB1C2[source]
ui_fgcolor = #fff[source]
get_hook(self)[source]
execute(self, context)[source]
on_kill(self)[source]

Was this entry helpful?