airflow.contrib.operators.databricks_operator¶
Module Contents¶
-
airflow.contrib.operators.databricks_operator._deep_string_coerce(content, json_path='json')[source]¶ -
Coerces content or all values of content if it is a dict to a string. The -
function will throw if content contains non-string or non-numeric types. The reason why we have this function is because the
self.jsonfield must be a dict with only string values. This is becauserender_templatewill fail for numerical values.
-
airflow.contrib.operators.databricks_operator._handle_databricks_operator_execution(operator, hook, log, context)[source]¶ -
Handles the Airflow + Databricks lifecycle logic for a Databricks operator - Parameters
operator – Databricks operator being handled
context – Airflow context
-
class
airflow.contrib.operators.databricks_operator.DatabricksSubmitRunOperator(json=None, spark_jar_task=None, notebook_task=None, new_cluster=None, existing_cluster_id=None, libraries=None, run_name=None, timeout_seconds=None, databricks_conn_id='databricks_default', polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, do_xcom_push=False, **kwargs)[source]¶ Bases:
airflow.models.BaseOperatorSubmits a Spark job run to Databricks using the api/2.0/jobs/runs/submit API endpoint.
There are two ways to instantiate this operator.
In the first way, you can take the JSON payload that you typically use to call the
api/2.0/jobs/runs/submitendpoint and pass it directly to ourDatabricksSubmitRunOperatorthrough thejsonparameter. For examplejson = { 'new_cluster': { 'spark_version': '2.1.0-db3-scala2.11', 'num_workers': 2 }, 'notebook_task': { 'notebook_path': '/Users/airflow@example.com/PrepareData', }, } notebook_run = DatabricksSubmitRunOperator(task_id='notebook_run', json=json)
Another way to accomplish the same thing is to use the named parameters of the
DatabricksSubmitRunOperatordirectly. Note that there is exactly one named parameter for each top level parameter in theruns/submitendpoint. In this method, your code would look like this:new_cluster = { 'spark_version': '2.1.0-db3-scala2.11', 'num_workers': 2 } notebook_task = { 'notebook_path': '/Users/airflow@example.com/PrepareData', } notebook_run = DatabricksSubmitRunOperator( task_id='notebook_run', new_cluster=new_cluster, notebook_task=notebook_task)
In the case where both the json parameter AND the named parameters are provided, they will be merged together. If there are conflicts during the merge, the named parameters will take precedence and override the top level
jsonkeys.- Currently the named parameters that
DatabricksSubmitRunOperatorsupports are spark_jar_tasknotebook_tasknew_clusterexisting_cluster_idlibrariesrun_nametimeout_seconds
- Parameters
json (dict) –
A JSON object containing API parameters which will be passed directly to the
api/2.0/jobs/runs/submitendpoint. The other named parameters (i.e.spark_jar_task,notebook_task..) to this operator will be merged with this json dictionary if they are provided. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys. (templated)See also
For more information about templating see Jinja Templating. https://docs.databricks.com/api/latest/jobs.html#runs-submit
spark_jar_task (dict) –
The main class and parameters for the JAR task. Note that the actual JAR is specified in the
libraries. EITHERspark_jar_taskORnotebook_taskshould be specified. This field will be templated.notebook_task (dict) –
The notebook path and parameters for the notebook task. EITHER
spark_jar_taskORnotebook_taskshould be specified. This field will be templated.new_cluster (dict) –
Specs for a new cluster on which this task will be run. EITHER
new_clusterORexisting_cluster_idshould be specified. This field will be templated.existing_cluster_id (str) – ID for existing cluster on which to run this task. EITHER
new_clusterORexisting_cluster_idshould be specified. This field will be templated.libraries (list of dicts) –
Libraries which this run will use. This field will be templated.
run_name (str) – The run name used for this task. By default this will be set to the Airflow
task_id. Thistask_idis a required parameter of the superclassBaseOperator. This field will be templated.timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used which means to have no timeout. This field will be templated.
databricks_conn_id (str) – The name of the Airflow connection to use. By default and in the common case this will be
databricks_default. To use token based authentication, provide the keytokenin the extra field for the connection and create the keyhostand leave thehostfield empty.polling_period_seconds (int) – Controls the rate which we poll for the result of this run. By default the operator will poll every 30 seconds.
databricks_retry_limit (int) – Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.
databricks_retry_delay (float) – Number of seconds to wait between retries (it might be a floating point number).
do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.
- Currently the named parameters that
-
class
airflow.contrib.operators.databricks_operator.DatabricksRunNowOperator(job_id, json=None, notebook_params=None, python_params=None, spark_submit_params=None, databricks_conn_id='databricks_default', polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, do_xcom_push=False, **kwargs)[source]¶ Bases:
airflow.models.BaseOperatorRuns an existing Spark job run to Databricks using the api/2.0/jobs/run-now API endpoint.
There are two ways to instantiate this operator.
In the first way, you can take the JSON payload that you typically use to call the
api/2.0/jobs/run-nowendpoint and pass it directly to ourDatabricksRunNowOperatorthrough thejsonparameter. For examplejson = { "job_id": 42, "notebook_params": { "dry-run": "true", "oldest-time-to-consider": "1457570074236" } } notebook_run = DatabricksRunNowOperator(task_id='notebook_run', json=json)
Another way to accomplish the same thing is to use the named parameters of the
DatabricksRunNowOperatordirectly. Note that there is exactly one named parameter for each top level parameter in therun-nowendpoint. In this method, your code would look like this:job_id=42 notebook_params = { "dry-run": "true", "oldest-time-to-consider": "1457570074236" } python_params = ["douglas adams", "42"] spark_submit_params = ["--class", "org.apache.spark.examples.SparkPi"] notebook_run = DatabricksRunNowOperator( job_id=job_id, notebook_params=notebook_params, python_params=python_params, spark_submit_params=spark_submit_params )
In the case where both the json parameter AND the named parameters are provided, they will be merged together. If there are conflicts during the merge, the named parameters will take precedence and override the top level
jsonkeys.- Currently the named parameters that
DatabricksRunNowOperatorsupports are job_idjsonnotebook_paramspython_paramsspark_submit_params
- Parameters
job_id (str) –
the job_id of the existing Databricks job. This field will be templated.
json (dict) –
A JSON object containing API parameters which will be passed directly to the
api/2.0/jobs/run-nowendpoint. The other named parameters (i.e.notebook_params,spark_submit_params..) to this operator will be merged with this json dictionary if they are provided. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys. (templated)See also
For more information about templating see Jinja Templating. https://docs.databricks.com/api/latest/jobs.html#run-now
notebook_params (dict) –
A dict from keys to values for jobs with notebook task, e.g. “notebook_params”: {“name”: “john doe”, “age”: “35”}. The map is passed to the notebook and will be accessible through the dbutils.widgets.get function. See Widgets for more information. If not specified upon run-now, the triggered run will use the job’s base parameters. notebook_params cannot be specified in conjunction with jar_params. The json representation of this field (i.e. {“notebook_params”:{“name”:”john doe”,”age”:”35”}}) cannot exceed 10,000 bytes. This field will be templated.
A list of parameters for jobs with python tasks, e.g. “python_params”: [“john doe”, “35”]. The parameters will be passed to python file as command line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The json representation of this field (i.e. {“python_params”:[“john doe”,”35”]}) cannot exceed 10,000 bytes. This field will be templated.
spark_submit_params (list[str]) –
A list of parameters for jobs with spark submit task, e.g. “spark_submit_params”: [“–class”, “org.apache.spark.examples.SparkPi”]. The parameters will be passed to spark-submit script as command line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The json representation of this field cannot exceed 10,000 bytes. This field will be templated.
timeout_seconds (int32) – The timeout for this run. By default a value of 0 is used which means to have no timeout. This field will be templated.
databricks_conn_id (str) – The name of the Airflow connection to use. By default and in the common case this will be
databricks_default. To use token based authentication, provide the keytokenin the extra field for the connection and create the keyhostand leave thehostfield empty.polling_period_seconds (int) – Controls the rate which we poll for the result of this run. By default the operator will poll every 30 seconds.
databricks_retry_limit (int) – Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.
do_xcom_push (bool) – Whether we should push run_id and run_page_url to xcom.
- Currently the named parameters that