Source code for airflow.utils.decorators

# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
#
import os

# inspect.signature is only available in Python 3. funcsigs.signature is
# a backport.
try:
    import inspect
    signature = inspect.signature
except AttributeError:
    import funcsigs
    signature = funcsigs.signature

from copy import copy
from functools import wraps

from airflow.exceptions import AirflowException


def apply_defaults(func):
    """
    Function decorator that Looks for an argument named "default_args", and
    fills the unspecified arguments from it.

    Since python2.* isn't clear about which arguments are missing when
    calling a function, and that this can be quite confusing with multi-level
    inheritance and argument defaults, this decorator also alerts with
    specific information about the missing arguments.
    """

    import airflow.models
    # Cache inspect.signature for the wrapper closure to avoid calling it
    # at every decorated invocation. This is separate sig_cache created
    # per decoration, i.e. each function decorated using apply_defaults will
    # have a different sig_cache.
    sig_cache = signature(func)
    non_optional_args = {
        name for (name, param) in sig_cache.parameters.items()
        if param.default == param.empty and
        param.name != 'self' and
        param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)}

    @wraps(func)
    def wrapper(*args, **kwargs):
        if len(args) > 1:
            raise AirflowException(
                "Use keyword arguments when initializing operators")
        dag_args = {}
        dag_params = {}

        dag = kwargs.get('dag', None) or airflow.models._CONTEXT_MANAGER_DAG
        if dag:
            dag_args = copy(dag.default_args) or {}
            dag_params = copy(dag.params) or {}

        params = {}
        if 'params' in kwargs:
            params = kwargs['params']
        dag_params.update(params)

        default_args = {}
        if 'default_args' in kwargs:
            default_args = kwargs['default_args']
            if 'params' in default_args:
                dag_params.update(default_args['params'])
                del default_args['params']

        dag_args.update(default_args)
        default_args = dag_args

        for arg in sig_cache.parameters:
            if arg not in kwargs and arg in default_args:
                kwargs[arg] = default_args[arg]
        missing_args = list(non_optional_args - set(kwargs))
        if missing_args:
            msg = "Argument {0} is required".format(missing_args)
            raise AirflowException(msg)

        kwargs['params'] = dag_params

        result = func(*args, **kwargs)
        return result
    return wrapper

if 'BUILDING_AIRFLOW_DOCS' in os.environ:
    # flake8: noqa: F811
    # Monkey patch hook to get good function headers while building docs
[docs] apply_defaults = lambda x: x
class cached_property: """ A decorator creating a property, the value of which is calculated only once and cached for later use. """ def __init__(self, func): self.func = func self.__doc__ = getattr(func, '__doc__') def __get__(self, instance, cls=None): if instance is None: return self result = self.func(instance) instance.__dict__[self.func.__name__] = result return result