# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from airflow.hooks.hive_hooks import HiveCliHook, HiveMetastoreHook
from airflow.hooks.druid_hook import DruidHook
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults
[docs]DEFAULT_TARGET_PARTITION_SIZE = 5000000
[docs]class HiveToDruidTransfer(BaseOperator):
"""
Moves data from Hive to Druid, [del]note that for now the data is loaded
into memory before being pushed to Druid, so this operator should
be used for smallish amount of data.[/del]
:param sql: SQL query to execute against the Druid database. (templated)
:type sql: str
:param druid_datasource: the datasource you want to ingest into in druid
:type druid_datasource: str
:param ts_dim: the timestamp dimension
:type ts_dim: str
:param metric_spec: the metrics you want to define for your data
:type metric_spec: list
:param hive_cli_conn_id: the hive connection id
:type hive_cli_conn_id: str
:param druid_ingest_conn_id: the druid ingest connection id
:type druid_ingest_conn_id: str
:param metastore_conn_id: the metastore connection id
:type metastore_conn_id: str
:param hadoop_dependency_coordinates: list of coordinates to squeeze
int the ingest json
:type hadoop_dependency_coordinates: list[str]
:param intervals: list of time intervals that defines segments,
this is passed as is to the json object. (templated)
:type intervals: list
:param hive_tblproperties: additional properties for tblproperties in
hive for the staging table
:type hive_tblproperties: dict
:param job_properties: additional properties for job
:type job_properties: dict
"""
[docs] template_fields = ('sql', 'intervals')
[docs] template_ext = ('.sql',)
@apply_defaults
def __init__(
self,
sql,
druid_datasource,
ts_dim,
metric_spec=None,
hive_cli_conn_id='hive_cli_default',
druid_ingest_conn_id='druid_ingest_default',
metastore_conn_id='metastore_default',
hadoop_dependency_coordinates=None,
intervals=None,
num_shards=-1,
target_partition_size=-1,
query_granularity="NONE",
segment_granularity="DAY",
hive_tblproperties=None,
job_properties=None,
*args, **kwargs):
super(HiveToDruidTransfer, self).__init__(*args, **kwargs)
self.sql = sql
self.druid_datasource = druid_datasource
self.ts_dim = ts_dim
self.intervals = intervals or ['{{ ds }}/{{ tomorrow_ds }}']
self.num_shards = num_shards
self.target_partition_size = target_partition_size
self.query_granularity = query_granularity
self.segment_granularity = segment_granularity
self.metric_spec = metric_spec or [{
"name": "count",
"type": "count"}]
self.hive_cli_conn_id = hive_cli_conn_id
self.hadoop_dependency_coordinates = hadoop_dependency_coordinates
self.druid_ingest_conn_id = druid_ingest_conn_id
self.metastore_conn_id = metastore_conn_id
self.hive_tblproperties = hive_tblproperties
self.job_properties = job_properties
[docs] def execute(self, context):
hive = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id)
self.log.info("Extracting data from Hive")
hive_table = 'druid.' + context['task_instance_key_str'].replace('.', '_')
sql = self.sql.strip().strip(';')
tblproperties = ''.join([", '{}' = '{}'"
.format(k, v)
for k, v in self.hive_tblproperties.items()])
hql = """\
SET mapred.output.compress=false;
SET hive.exec.compress.output=false;
DROP TABLE IF EXISTS {hive_table};
CREATE TABLE {hive_table}
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE
TBLPROPERTIES ('serialization.null.format' = ''{tblproperties})
AS
{sql}
""".format(**locals())
self.log.info("Running command:\n %s", hql)
hive.run_cli(hql)
m = HiveMetastoreHook(self.metastore_conn_id)
# Get the Hive table and extract the columns
t = m.get_table(hive_table)
columns = [col.name for col in t.sd.cols]
# Get the path on hdfs
hdfs_uri = m.get_table(hive_table).sd.location
pos = hdfs_uri.find('/user')
static_path = hdfs_uri[pos:]
schema, table = hive_table.split('.')
druid = DruidHook(druid_ingest_conn_id=self.druid_ingest_conn_id)
try:
index_spec = self.construct_ingest_query(
static_path=static_path,
columns=columns,
)
self.log.info("Inserting rows into Druid, hdfs path: %s", static_path)
druid.submit_indexing_job(index_spec)
self.log.info("Load seems to have succeeded!")
finally:
self.log.info(
"Cleaning up by dropping the temp Hive table %s",
hive_table
)
hql = "DROP TABLE IF EXISTS {}".format(hive_table)
hive.run_cli(hql)
[docs] def construct_ingest_query(self, static_path, columns):
"""
Builds an ingest query for an HDFS TSV load.
:param static_path: The path on hdfs where the data is
:type static_path: str
:param columns: List of all the columns that are available
:type columns: list
"""
# backward compatibility for num_shards,
# but target_partition_size is the default setting
# and overwrites the num_shards
num_shards = self.num_shards
target_partition_size = self.target_partition_size
if self.target_partition_size == -1:
if self.num_shards == -1:
target_partition_size = DEFAULT_TARGET_PARTITION_SIZE
else:
num_shards = -1
metric_names = [m['fieldName'] for m in self.metric_spec if m['type'] != 'count']
# Take all the columns, which are not the time dimension
# or a metric, as the dimension columns
dimensions = [c for c in columns if c not in metric_names and c != self.ts_dim]
ingest_query_dict = {
"type": "index_hadoop",
"spec": {
"dataSchema": {
"metricsSpec": self.metric_spec,
"granularitySpec": {
"queryGranularity": self.query_granularity,
"intervals": self.intervals,
"type": "uniform",
"segmentGranularity": self.segment_granularity,
},
"parser": {
"type": "string",
"parseSpec": {
"columns": columns,
"dimensionsSpec": {
"dimensionExclusions": [],
"dimensions": dimensions, # list of names
"spatialDimensions": []
},
"timestampSpec": {
"column": self.ts_dim,
"format": "auto"
},
"format": "tsv"
}
},
"dataSource": self.druid_datasource
},
"tuningConfig": {
"type": "hadoop",
"jobProperties": {
"mapreduce.job.user.classpath.first": "false",
"mapreduce.map.output.compress": "false",
"mapreduce.output.fileoutputformat.compress": "false",
},
"partitionsSpec": {
"type": "hashed",
"targetPartitionSize": target_partition_size,
"numShards": num_shards,
},
},
"ioConfig": {
"inputSpec": {
"paths": static_path,
"type": "static"
},
"type": "hadoop"
}
}
}
if self.job_properties:
ingest_query_dict['spec']['tuningConfig']['jobProperties'] \
.update(self.job_properties)
if self.hadoop_dependency_coordinates:
ingest_query_dict['hadoopDependencyCoordinates'] \
= self.hadoop_dependency_coordinates
return ingest_query_dict