# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import json
import re
import select
import subprocess
import time
import uuid
from googleapiclient.discovery import build
from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook
from airflow.utils.log.logging_mixin import LoggingMixin
# This is the default location
# https://cloud.google.com/dataflow/pipelines/specifying-exec-params
[docs]DEFAULT_DATAFLOW_LOCATION = 'us-central1'
[docs]class _DataflowJob(LoggingMixin):
def __init__(self, dataflow, project_number, name, location, poll_sleep=10,
job_id=None):
self._dataflow = dataflow
self._project_number = project_number
self._job_name = name
self._job_location = location
self._job_id = job_id
self._job = self._get_job()
self._poll_sleep = poll_sleep
[docs] def _get_job_id_from_name(self):
jobs = self._dataflow.projects().locations().jobs().list(
projectId=self._project_number,
location=self._job_location
).execute(num_retries=5)
for job in jobs['jobs']:
if job['name'] == self._job_name:
self._job_id = job['id']
return job
return None
[docs] def _get_job(self):
if self._job_id:
job = self._dataflow.projects().locations().jobs().get(
projectId=self._project_number,
location=self._job_location,
jobId=self._job_id).execute(num_retries=5)
elif self._job_name:
job = self._get_job_id_from_name()
else:
raise Exception('Missing both dataflow job ID and name.')
if job and 'currentState' in job:
self.log.info(
'Google Cloud DataFlow job %s is %s',
job['name'], job['currentState']
)
elif job:
self.log.info(
'Google Cloud DataFlow with job_id %s has name %s',
self._job_id, job['name']
)
else:
self.log.info(
'Google Cloud DataFlow job not available yet..'
)
return job
[docs] def wait_for_done(self):
while True:
if self._job and 'currentState' in self._job:
if 'JOB_STATE_DONE' == self._job['currentState']:
return True
elif 'JOB_STATE_RUNNING' == self._job['currentState'] and \
'JOB_TYPE_STREAMING' == self._job['type']:
return True
elif 'JOB_STATE_FAILED' == self._job['currentState']:
raise Exception("Google Cloud Dataflow job {} has failed.".format(
self._job['name']))
elif 'JOB_STATE_CANCELLED' == self._job['currentState']:
raise Exception("Google Cloud Dataflow job {} was cancelled.".format(
self._job['name']))
elif 'JOB_STATE_RUNNING' == self._job['currentState']:
time.sleep(self._poll_sleep)
elif 'JOB_STATE_PENDING' == self._job['currentState']:
time.sleep(15)
else:
self.log.debug(str(self._job))
raise Exception(
"Google Cloud Dataflow job {} was unknown state: {}".format(
self._job['name'], self._job['currentState']))
else:
time.sleep(15)
self._job = self._get_job()
[docs] def get(self):
return self._job
[docs]class _Dataflow(LoggingMixin):
def __init__(self, cmd):
self.log.info("Running command: %s", ' '.join(cmd))
self._proc = subprocess.Popen(
cmd,
shell=False,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
close_fds=True)
[docs] def _line(self, fd):
if fd == self._proc.stderr.fileno():
line = b''.join(self._proc.stderr.readlines())
if line:
self.log.warning(line[:-1])
return line
if fd == self._proc.stdout.fileno():
line = b''.join(self._proc.stdout.readlines())
if line:
self.log.info(line[:-1])
return line
@staticmethod
[docs] def wait_for_done(self):
reads = [self._proc.stderr.fileno(), self._proc.stdout.fileno()]
self.log.info("Start waiting for DataFlow process to complete.")
job_id = None
# Make sure logs are processed regardless whether the subprocess is
# terminated.
process_ends = False
while True:
ret = select.select(reads, [], [], 5)
if ret is not None:
for fd in ret[0]:
line = self._line(fd)
if line:
job_id = job_id or self._extract_job(line)
else:
self.log.info("Waiting for DataFlow process to complete.")
if process_ends:
break
if self._proc.poll() is not None:
# Mark process completion but allows its outputs to be consumed.
process_ends = True
if self._proc.returncode != 0:
raise Exception("DataFlow failed with return code {}".format(
self._proc.returncode))
return job_id
[docs]class DataFlowHook(GoogleCloudBaseHook):
def __init__(self,
gcp_conn_id='google_cloud_default',
delegate_to=None,
poll_sleep=10):
self.poll_sleep = poll_sleep
super(DataFlowHook, self).__init__(gcp_conn_id, delegate_to)
[docs] def get_conn(self):
"""
Returns a Google Cloud Dataflow service object.
"""
http_authorized = self._authorize()
return build(
'dataflow', 'v1b3', http=http_authorized, cache_discovery=False)
@GoogleCloudBaseHook._Decorators.provide_gcp_credential_file
[docs] def _start_dataflow(self, variables, name, command_prefix, label_formatter):
variables = self._set_variables(variables)
cmd = command_prefix + self._build_cmd(variables, label_formatter)
job_id = _Dataflow(cmd).wait_for_done()
_DataflowJob(self.get_conn(), variables['project'], name,
variables['region'],
self.poll_sleep, job_id).wait_for_done()
@staticmethod
[docs] def _set_variables(variables):
if variables['project'] is None:
raise Exception('Project not specified')
if 'region' not in variables.keys():
variables['region'] = DEFAULT_DATAFLOW_LOCATION
return variables
[docs] def start_java_dataflow(self, job_name, variables, dataflow, job_class=None,
append_job_name=True):
name = self._build_dataflow_job_name(job_name, append_job_name)
variables['jobName'] = name
def label_formatter(labels_dict):
return ['--labels={}'.format(
json.dumps(labels_dict).replace(' ', ''))]
command_prefix = (["java", "-cp", dataflow, job_class] if job_class
else ["java", "-jar", dataflow])
self._start_dataflow(variables, name, command_prefix, label_formatter)
[docs] def start_template_dataflow(self, job_name, variables, parameters, dataflow_template,
append_job_name=True):
variables = self._set_variables(variables)
name = self._build_dataflow_job_name(job_name, append_job_name)
self._start_template_dataflow(
name, variables, parameters, dataflow_template)
[docs] def start_python_dataflow(self, job_name, variables, dataflow, py_options,
append_job_name=True):
name = self._build_dataflow_job_name(job_name, append_job_name)
variables['job_name'] = name
def label_formatter(labels_dict):
return ['--labels={}={}'.format(key, value)
for key, value in labels_dict.items()]
self._start_dataflow(variables, name, ["python2"] + py_options + [dataflow],
label_formatter)
@staticmethod
[docs] def _build_dataflow_job_name(job_name, append_job_name=True):
base_job_name = str(job_name).replace('_', '-')
if not re.match(r"^[a-z]([-a-z0-9]*[a-z0-9])?$", base_job_name):
raise ValueError(
'Invalid job_name ({}); the name must consist of'
'only the characters [-a-z0-9], starting with a '
'letter and ending with a letter or number '.format(base_job_name))
if append_job_name:
safe_job_name = base_job_name + "-" + str(uuid.uuid4())[:8]
else:
safe_job_name = base_job_name
return safe_job_name
@staticmethod
[docs] def _build_cmd(variables, label_formatter):
command = ["--runner=DataflowRunner"]
if variables is not None:
for attr, value in variables.items():
if attr == 'labels':
command += label_formatter(value)
elif value is None or value.__len__() < 1:
command.append("--" + attr)
else:
command.append("--" + attr + "=" + value)
return command
[docs] def _start_template_dataflow(self, name, variables, parameters,
dataflow_template):
# Builds RuntimeEnvironment from variables dictionary
# https://cloud.google.com/dataflow/docs/reference/rest/v1b3/RuntimeEnvironment
environment = {}
for key in ['maxWorkers', 'zone', 'serviceAccountEmail', 'tempLocation',
'bypassTempDirValidation', 'machineType', 'network', 'subnetwork']:
if key in variables:
environment.update({key: variables[key]})
body = {"jobName": name,
"parameters": parameters,
"environment": environment}
service = self.get_conn()
request = service.projects().locations().templates().launch(
projectId=variables['project'],
location=variables['region'],
gcsPath=dataflow_template,
body=body
)
response = request.execute()
variables = self._set_variables(variables)
_DataflowJob(self.get_conn(), variables['project'], name, variables['region'],
self.poll_sleep).wait_for_done()
return response